Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

4\times 2\sqrt{5}-\sqrt{45}+\sqrt[4]{25}+\sqrt[5]{125}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
8\sqrt{5}-\sqrt{45}+\sqrt[4]{25}+\sqrt[5]{125}
Multiply 4 and 2 to get 8.
8\sqrt{5}-3\sqrt{5}+\sqrt[4]{25}+\sqrt[5]{125}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
5\sqrt{5}+\sqrt[4]{25}+\sqrt[5]{125}
Combine 8\sqrt{5} and -3\sqrt{5} to get 5\sqrt{5}.
\sqrt[4]{25}=\sqrt[4]{5^{2}}=5^{\frac{2}{4}}=5^{\frac{1}{2}}=\sqrt{5}
Rewrite \sqrt[4]{25} as \sqrt[4]{5^{2}}. Convert from radical to exponential form and cancel out 2 in the exponent. Convert back to radical form.
5\sqrt{5}+\sqrt{5}+\sqrt[5]{125}
Insert the obtained value back in the expression.
6\sqrt{5}+\sqrt[5]{125}
Combine 5\sqrt{5} and \sqrt{5} to get 6\sqrt{5}.