Evaluate
\frac{143}{20}=7.15
Factor
\frac{11 \cdot 13}{2 ^ {2} \cdot 5} = 7\frac{3}{20} = 7.15
Share
Copied to clipboard
4\sqrt{\frac{50+14}{25}}+\sqrt{\frac{36}{64}}
Multiply 2 and 25 to get 50.
4\sqrt{\frac{64}{25}}+\sqrt{\frac{36}{64}}
Add 50 and 14 to get 64.
4\times \frac{8}{5}+\sqrt{\frac{36}{64}}
Rewrite the square root of the division \frac{64}{25} as the division of square roots \frac{\sqrt{64}}{\sqrt{25}}. Take the square root of both numerator and denominator.
\frac{4\times 8}{5}+\sqrt{\frac{36}{64}}
Express 4\times \frac{8}{5} as a single fraction.
\frac{32}{5}+\sqrt{\frac{36}{64}}
Multiply 4 and 8 to get 32.
\frac{32}{5}+\sqrt{\frac{9}{16}}
Reduce the fraction \frac{36}{64} to lowest terms by extracting and canceling out 4.
\frac{32}{5}+\frac{3}{4}
Rewrite the square root of the division \frac{9}{16} as the division of square roots \frac{\sqrt{9}}{\sqrt{16}}. Take the square root of both numerator and denominator.
\frac{128}{20}+\frac{15}{20}
Least common multiple of 5 and 4 is 20. Convert \frac{32}{5} and \frac{3}{4} to fractions with denominator 20.
\frac{128+15}{20}
Since \frac{128}{20} and \frac{15}{20} have the same denominator, add them by adding their numerators.
\frac{143}{20}
Add 128 and 15 to get 143.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}