4 \sqrt { \frac { 15 } { 8 } } \text { i } \frac { 1 } { 5 } \sqrt { 750 }
Evaluate
30i
Real Part
0
Quiz
5 problems similar to:
4 \sqrt { \frac { 15 } { 8 } } \text { i } \frac { 1 } { 5 } \sqrt { 750 }
Share
Copied to clipboard
4i\times \frac{\sqrt{15}}{\sqrt{8}}\times \frac{1}{5}\sqrt{750}
Rewrite the square root of the division \sqrt{\frac{15}{8}} as the division of square roots \frac{\sqrt{15}}{\sqrt{8}}.
4i\times \frac{\sqrt{15}}{2\sqrt{2}}\times \frac{1}{5}\sqrt{750}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
4i\times \frac{\sqrt{15}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}\times \frac{1}{5}\sqrt{750}
Rationalize the denominator of \frac{\sqrt{15}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
4i\times \frac{\sqrt{15}\sqrt{2}}{2\times 2}\times \frac{1}{5}\sqrt{750}
The square of \sqrt{2} is 2.
4i\times \frac{\sqrt{30}}{2\times 2}\times \frac{1}{5}\sqrt{750}
To multiply \sqrt{15} and \sqrt{2}, multiply the numbers under the square root.
4i\times \frac{\sqrt{30}}{4}\times \frac{1}{5}\sqrt{750}
Multiply 2 and 2 to get 4.
\frac{4}{5}i\times \frac{\sqrt{30}}{4}\sqrt{750}
Multiply 4i and \frac{1}{5} to get \frac{4}{5}i.
\frac{4}{5}i\times \frac{\sqrt{30}}{4}\times 5\sqrt{30}
Factor 750=5^{2}\times 30. Rewrite the square root of the product \sqrt{5^{2}\times 30} as the product of square roots \sqrt{5^{2}}\sqrt{30}. Take the square root of 5^{2}.
4i\times \frac{\sqrt{30}}{4}\sqrt{30}
Multiply \frac{4}{5}i and 5 to get 4i.
4i\times \frac{\sqrt{30}\sqrt{30}}{4}
Express \frac{\sqrt{30}}{4}\sqrt{30} as a single fraction.
4i\times \frac{30}{4}
Multiply \sqrt{30} and \sqrt{30} to get 30.
4i\times \frac{15}{2}
Reduce the fraction \frac{30}{4} to lowest terms by extracting and canceling out 2.
30i
Multiply 4i and \frac{15}{2} to get 30i.
Re(4i\times \frac{\sqrt{15}}{\sqrt{8}}\times \frac{1}{5}\sqrt{750})
Rewrite the square root of the division \sqrt{\frac{15}{8}} as the division of square roots \frac{\sqrt{15}}{\sqrt{8}}.
Re(4i\times \frac{\sqrt{15}}{2\sqrt{2}}\times \frac{1}{5}\sqrt{750})
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
Re(4i\times \frac{\sqrt{15}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}\times \frac{1}{5}\sqrt{750})
Rationalize the denominator of \frac{\sqrt{15}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
Re(4i\times \frac{\sqrt{15}\sqrt{2}}{2\times 2}\times \frac{1}{5}\sqrt{750})
The square of \sqrt{2} is 2.
Re(4i\times \frac{\sqrt{30}}{2\times 2}\times \frac{1}{5}\sqrt{750})
To multiply \sqrt{15} and \sqrt{2}, multiply the numbers under the square root.
Re(4i\times \frac{\sqrt{30}}{4}\times \frac{1}{5}\sqrt{750})
Multiply 2 and 2 to get 4.
Re(\frac{4}{5}i\times \frac{\sqrt{30}}{4}\sqrt{750})
Multiply 4i and \frac{1}{5} to get \frac{4}{5}i.
Re(\frac{4}{5}i\times \frac{\sqrt{30}}{4}\times 5\sqrt{30})
Factor 750=5^{2}\times 30. Rewrite the square root of the product \sqrt{5^{2}\times 30} as the product of square roots \sqrt{5^{2}}\sqrt{30}. Take the square root of 5^{2}.
Re(4i\times \frac{\sqrt{30}}{4}\sqrt{30})
Multiply \frac{4}{5}i and 5 to get 4i.
Re(4i\times \frac{\sqrt{30}\sqrt{30}}{4})
Express \frac{\sqrt{30}}{4}\sqrt{30} as a single fraction.
Re(4i\times \frac{30}{4})
Multiply \sqrt{30} and \sqrt{30} to get 30.
Re(4i\times \frac{15}{2})
Reduce the fraction \frac{30}{4} to lowest terms by extracting and canceling out 2.
Re(30i)
Multiply 4i and \frac{15}{2} to get 30i.
0
The real part of 30i is 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}