Solve for a
a=-\frac{2\left(-\sin(x)+1\right)}{2\sin(x)-1}
\nexists n_{1}\in \mathrm{Z}\text{ : }\left(x=2\pi n_{1}+\frac{5\pi }{6}\text{ or }x=2\pi n_{1}+\frac{\pi }{6}\right)
Graph
Share
Copied to clipboard
4\sin(x)\left(a-1\right)=\left(a-1\right)\times 3-\left(a+1\right)
Variable a cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by a-1.
4\sin(x)a-4\sin(x)=\left(a-1\right)\times 3-\left(a+1\right)
Use the distributive property to multiply 4\sin(x) by a-1.
4\sin(x)a-4\sin(x)=3a-3-\left(a+1\right)
Use the distributive property to multiply a-1 by 3.
4\sin(x)a-4\sin(x)=3a-3-a-1
To find the opposite of a+1, find the opposite of each term.
4\sin(x)a-4\sin(x)=2a-3-1
Combine 3a and -a to get 2a.
4\sin(x)a-4\sin(x)=2a-4
Subtract 1 from -3 to get -4.
4\sin(x)a-4\sin(x)-2a=-4
Subtract 2a from both sides.
4\sin(x)a-2a=-4+4\sin(x)
Add 4\sin(x) to both sides.
\left(4\sin(x)-2\right)a=-4+4\sin(x)
Combine all terms containing a.
\left(4\sin(x)-2\right)a=4\sin(x)-4
The equation is in standard form.
\frac{\left(4\sin(x)-2\right)a}{4\sin(x)-2}=\frac{4\left(\sin(x)-1\right)}{4\sin(x)-2}
Divide both sides by 4\sin(x)-2.
a=\frac{4\left(\sin(x)-1\right)}{4\sin(x)-2}
Dividing by 4\sin(x)-2 undoes the multiplication by 4\sin(x)-2.
a=\frac{2\left(\sin(x)-1\right)}{2\sin(x)-1}
Divide 4\left(-1+\sin(x)\right) by 4\sin(x)-2.
a=\frac{2\left(\sin(x)-1\right)}{2\sin(x)-1}\text{, }a\neq 1
Variable a cannot be equal to 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}