Skip to main content
Solve for a
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\sin(x)\left(a-1\right)=\left(a-1\right)\times 3-\left(a+1\right)
Variable a cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by a-1.
4\sin(x)a-4\sin(x)=\left(a-1\right)\times 3-\left(a+1\right)
Use the distributive property to multiply 4\sin(x) by a-1.
4\sin(x)a-4\sin(x)=3a-3-\left(a+1\right)
Use the distributive property to multiply a-1 by 3.
4\sin(x)a-4\sin(x)=3a-3-a-1
To find the opposite of a+1, find the opposite of each term.
4\sin(x)a-4\sin(x)=2a-3-1
Combine 3a and -a to get 2a.
4\sin(x)a-4\sin(x)=2a-4
Subtract 1 from -3 to get -4.
4\sin(x)a-4\sin(x)-2a=-4
Subtract 2a from both sides.
4\sin(x)a-2a=-4+4\sin(x)
Add 4\sin(x) to both sides.
\left(4\sin(x)-2\right)a=-4+4\sin(x)
Combine all terms containing a.
\left(4\sin(x)-2\right)a=4\sin(x)-4
The equation is in standard form.
\frac{\left(4\sin(x)-2\right)a}{4\sin(x)-2}=\frac{4\left(\sin(x)-1\right)}{4\sin(x)-2}
Divide both sides by 4\sin(x)-2.
a=\frac{4\left(\sin(x)-1\right)}{4\sin(x)-2}
Dividing by 4\sin(x)-2 undoes the multiplication by 4\sin(x)-2.
a=\frac{2\left(\sin(x)-1\right)}{2\sin(x)-1}
Divide 4\left(-1+\sin(x)\right) by 4\sin(x)-2.
a=\frac{2\left(\sin(x)-1\right)}{2\sin(x)-1}\text{, }a\neq 1
Variable a cannot be equal to 1.