Solve for c (complex solution)
\left\{\begin{matrix}c=-\frac{2\left(\cos(2x)-1\right)}{3h}\text{, }&h\neq 0\\c\in \mathrm{C}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\text{ and }h=0\end{matrix}\right.
Solve for h (complex solution)
\left\{\begin{matrix}h=-\frac{2\left(\cos(2x)-1\right)}{3c}\text{, }&c\neq 0\\h\in \mathrm{C}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\text{ and }c=0\end{matrix}\right.
Solve for c
\left\{\begin{matrix}c=\frac{4\left(\sin(x)\right)^{2}}{3h}\text{, }&h\neq 0\\c\in \mathrm{R}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\text{ and }h=0\end{matrix}\right.
Solve for h
\left\{\begin{matrix}h=\frac{4\left(\sin(x)\right)^{2}}{3c}\text{, }&c\neq 0\\h\in \mathrm{R}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\text{ and }c=0\end{matrix}\right.
Graph
Share
Copied to clipboard
3ch=4\left(\sin(x)\right)^{2}
Swap sides so that all variable terms are on the left hand side.
3hc=4\left(\sin(x)\right)^{2}
The equation is in standard form.
\frac{3hc}{3h}=\frac{4\left(\sin(x)\right)^{2}}{3h}
Divide both sides by 3h.
c=\frac{4\left(\sin(x)\right)^{2}}{3h}
Dividing by 3h undoes the multiplication by 3h.
3ch=4\left(\sin(x)\right)^{2}
Swap sides so that all variable terms are on the left hand side.
\frac{3ch}{3c}=\frac{4\left(\sin(x)\right)^{2}}{3c}
Divide both sides by 3c.
h=\frac{4\left(\sin(x)\right)^{2}}{3c}
Dividing by 3c undoes the multiplication by 3c.
3ch=4\left(\sin(x)\right)^{2}
Swap sides so that all variable terms are on the left hand side.
3hc=4\left(\sin(x)\right)^{2}
The equation is in standard form.
\frac{3hc}{3h}=\frac{4\left(\sin(x)\right)^{2}}{3h}
Divide both sides by 3h.
c=\frac{4\left(\sin(x)\right)^{2}}{3h}
Dividing by 3h undoes the multiplication by 3h.
3ch=4\left(\sin(x)\right)^{2}
Swap sides so that all variable terms are on the left hand side.
\frac{3ch}{3c}=\frac{4\left(\sin(x)\right)^{2}}{3c}
Divide both sides by 3c.
h=\frac{4\left(\sin(x)\right)^{2}}{3c}
Dividing by 3c undoes the multiplication by 3c.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}