Solve for ψ
\psi =\frac{\sqrt{41}+3}{2}\approx 4.701562119
\psi =\frac{3-\sqrt{41}}{2}\approx -1.701562119
Share
Copied to clipboard
4\psi ^{2}-2=3\psi ^{2}+3\psi +6
Use the distributive property to multiply 3\psi by \psi +1.
4\psi ^{2}-2-3\psi ^{2}=3\psi +6
Subtract 3\psi ^{2} from both sides.
\psi ^{2}-2=3\psi +6
Combine 4\psi ^{2} and -3\psi ^{2} to get \psi ^{2}.
\psi ^{2}-2-3\psi =6
Subtract 3\psi from both sides.
\psi ^{2}-2-3\psi -6=0
Subtract 6 from both sides.
\psi ^{2}-8-3\psi =0
Subtract 6 from -2 to get -8.
\psi ^{2}-3\psi -8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\psi =\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-8\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\psi =\frac{-\left(-3\right)±\sqrt{9-4\left(-8\right)}}{2}
Square -3.
\psi =\frac{-\left(-3\right)±\sqrt{9+32}}{2}
Multiply -4 times -8.
\psi =\frac{-\left(-3\right)±\sqrt{41}}{2}
Add 9 to 32.
\psi =\frac{3±\sqrt{41}}{2}
The opposite of -3 is 3.
\psi =\frac{\sqrt{41}+3}{2}
Now solve the equation \psi =\frac{3±\sqrt{41}}{2} when ± is plus. Add 3 to \sqrt{41}.
\psi =\frac{3-\sqrt{41}}{2}
Now solve the equation \psi =\frac{3±\sqrt{41}}{2} when ± is minus. Subtract \sqrt{41} from 3.
\psi =\frac{\sqrt{41}+3}{2} \psi =\frac{3-\sqrt{41}}{2}
The equation is now solved.
4\psi ^{2}-2=3\psi ^{2}+3\psi +6
Use the distributive property to multiply 3\psi by \psi +1.
4\psi ^{2}-2-3\psi ^{2}=3\psi +6
Subtract 3\psi ^{2} from both sides.
\psi ^{2}-2=3\psi +6
Combine 4\psi ^{2} and -3\psi ^{2} to get \psi ^{2}.
\psi ^{2}-2-3\psi =6
Subtract 3\psi from both sides.
\psi ^{2}-3\psi =6+2
Add 2 to both sides.
\psi ^{2}-3\psi =8
Add 6 and 2 to get 8.
\psi ^{2}-3\psi +\left(-\frac{3}{2}\right)^{2}=8+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\psi ^{2}-3\psi +\frac{9}{4}=8+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
\psi ^{2}-3\psi +\frac{9}{4}=\frac{41}{4}
Add 8 to \frac{9}{4}.
\left(\psi -\frac{3}{2}\right)^{2}=\frac{41}{4}
Factor \psi ^{2}-3\psi +\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(\psi -\frac{3}{2}\right)^{2}}=\sqrt{\frac{41}{4}}
Take the square root of both sides of the equation.
\psi -\frac{3}{2}=\frac{\sqrt{41}}{2} \psi -\frac{3}{2}=-\frac{\sqrt{41}}{2}
Simplify.
\psi =\frac{\sqrt{41}+3}{2} \psi =\frac{3-\sqrt{41}}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}