Solve for x
x=4
x = \frac{14}{5} = 2\frac{4}{5} = 2.8
Graph
Share
Copied to clipboard
\left(4x-12\right)\left(5x-19\right)=4
Use the distributive property to multiply 4 by x-3.
20x^{2}-136x+228=4
Use the distributive property to multiply 4x-12 by 5x-19 and combine like terms.
20x^{2}-136x+228-4=0
Subtract 4 from both sides.
20x^{2}-136x+224=0
Subtract 4 from 228 to get 224.
x=\frac{-\left(-136\right)±\sqrt{\left(-136\right)^{2}-4\times 20\times 224}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, -136 for b, and 224 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-136\right)±\sqrt{18496-4\times 20\times 224}}{2\times 20}
Square -136.
x=\frac{-\left(-136\right)±\sqrt{18496-80\times 224}}{2\times 20}
Multiply -4 times 20.
x=\frac{-\left(-136\right)±\sqrt{18496-17920}}{2\times 20}
Multiply -80 times 224.
x=\frac{-\left(-136\right)±\sqrt{576}}{2\times 20}
Add 18496 to -17920.
x=\frac{-\left(-136\right)±24}{2\times 20}
Take the square root of 576.
x=\frac{136±24}{2\times 20}
The opposite of -136 is 136.
x=\frac{136±24}{40}
Multiply 2 times 20.
x=\frac{160}{40}
Now solve the equation x=\frac{136±24}{40} when ± is plus. Add 136 to 24.
x=4
Divide 160 by 40.
x=\frac{112}{40}
Now solve the equation x=\frac{136±24}{40} when ± is minus. Subtract 24 from 136.
x=\frac{14}{5}
Reduce the fraction \frac{112}{40} to lowest terms by extracting and canceling out 8.
x=4 x=\frac{14}{5}
The equation is now solved.
\left(4x-12\right)\left(5x-19\right)=4
Use the distributive property to multiply 4 by x-3.
20x^{2}-136x+228=4
Use the distributive property to multiply 4x-12 by 5x-19 and combine like terms.
20x^{2}-136x=4-228
Subtract 228 from both sides.
20x^{2}-136x=-224
Subtract 228 from 4 to get -224.
\frac{20x^{2}-136x}{20}=-\frac{224}{20}
Divide both sides by 20.
x^{2}+\left(-\frac{136}{20}\right)x=-\frac{224}{20}
Dividing by 20 undoes the multiplication by 20.
x^{2}-\frac{34}{5}x=-\frac{224}{20}
Reduce the fraction \frac{-136}{20} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{34}{5}x=-\frac{56}{5}
Reduce the fraction \frac{-224}{20} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{34}{5}x+\left(-\frac{17}{5}\right)^{2}=-\frac{56}{5}+\left(-\frac{17}{5}\right)^{2}
Divide -\frac{34}{5}, the coefficient of the x term, by 2 to get -\frac{17}{5}. Then add the square of -\frac{17}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{34}{5}x+\frac{289}{25}=-\frac{56}{5}+\frac{289}{25}
Square -\frac{17}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{34}{5}x+\frac{289}{25}=\frac{9}{25}
Add -\frac{56}{5} to \frac{289}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{17}{5}\right)^{2}=\frac{9}{25}
Factor x^{2}-\frac{34}{5}x+\frac{289}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{5}\right)^{2}}=\sqrt{\frac{9}{25}}
Take the square root of both sides of the equation.
x-\frac{17}{5}=\frac{3}{5} x-\frac{17}{5}=-\frac{3}{5}
Simplify.
x=4 x=\frac{14}{5}
Add \frac{17}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}