Solve for x
x = -\frac{5119}{3072} = -1\frac{2047}{3072} \approx -1.666341146
Graph
Share
Copied to clipboard
5+3x=\frac{\frac{1}{256}}{4}
Divide both sides by 4.
5+3x=\frac{1}{256\times 4}
Express \frac{\frac{1}{256}}{4} as a single fraction.
5+3x=\frac{1}{1024}
Multiply 256 and 4 to get 1024.
3x=\frac{1}{1024}-5
Subtract 5 from both sides.
3x=\frac{1}{1024}-\frac{5120}{1024}
Convert 5 to fraction \frac{5120}{1024}.
3x=\frac{1-5120}{1024}
Since \frac{1}{1024} and \frac{5120}{1024} have the same denominator, subtract them by subtracting their numerators.
3x=-\frac{5119}{1024}
Subtract 5120 from 1 to get -5119.
x=\frac{-\frac{5119}{1024}}{3}
Divide both sides by 3.
x=\frac{-5119}{1024\times 3}
Express \frac{-\frac{5119}{1024}}{3} as a single fraction.
x=\frac{-5119}{3072}
Multiply 1024 and 3 to get 3072.
x=-\frac{5119}{3072}
Fraction \frac{-5119}{3072} can be rewritten as -\frac{5119}{3072} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}