Skip to main content
Solve for λ
Tick mark Image

Similar Problems from Web Search

Share

4\lambda ^{2}+6\lambda +4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\lambda =\frac{-6±\sqrt{6^{2}-4\times 4\times 4}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 6 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\lambda =\frac{-6±\sqrt{36-4\times 4\times 4}}{2\times 4}
Square 6.
\lambda =\frac{-6±\sqrt{36-16\times 4}}{2\times 4}
Multiply -4 times 4.
\lambda =\frac{-6±\sqrt{36-64}}{2\times 4}
Multiply -16 times 4.
\lambda =\frac{-6±\sqrt{-28}}{2\times 4}
Add 36 to -64.
\lambda =\frac{-6±2\sqrt{7}i}{2\times 4}
Take the square root of -28.
\lambda =\frac{-6±2\sqrt{7}i}{8}
Multiply 2 times 4.
\lambda =\frac{-6+2\sqrt{7}i}{8}
Now solve the equation \lambda =\frac{-6±2\sqrt{7}i}{8} when ± is plus. Add -6 to 2i\sqrt{7}.
\lambda =\frac{-3+\sqrt{7}i}{4}
Divide -6+2i\sqrt{7} by 8.
\lambda =\frac{-2\sqrt{7}i-6}{8}
Now solve the equation \lambda =\frac{-6±2\sqrt{7}i}{8} when ± is minus. Subtract 2i\sqrt{7} from -6.
\lambda =\frac{-\sqrt{7}i-3}{4}
Divide -6-2i\sqrt{7} by 8.
\lambda =\frac{-3+\sqrt{7}i}{4} \lambda =\frac{-\sqrt{7}i-3}{4}
The equation is now solved.
4\lambda ^{2}+6\lambda +4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4\lambda ^{2}+6\lambda +4-4=-4
Subtract 4 from both sides of the equation.
4\lambda ^{2}+6\lambda =-4
Subtracting 4 from itself leaves 0.
\frac{4\lambda ^{2}+6\lambda }{4}=-\frac{4}{4}
Divide both sides by 4.
\lambda ^{2}+\frac{6}{4}\lambda =-\frac{4}{4}
Dividing by 4 undoes the multiplication by 4.
\lambda ^{2}+\frac{3}{2}\lambda =-\frac{4}{4}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\lambda ^{2}+\frac{3}{2}\lambda =-1
Divide -4 by 4.
\lambda ^{2}+\frac{3}{2}\lambda +\left(\frac{3}{4}\right)^{2}=-1+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\lambda ^{2}+\frac{3}{2}\lambda +\frac{9}{16}=-1+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
\lambda ^{2}+\frac{3}{2}\lambda +\frac{9}{16}=-\frac{7}{16}
Add -1 to \frac{9}{16}.
\left(\lambda +\frac{3}{4}\right)^{2}=-\frac{7}{16}
Factor \lambda ^{2}+\frac{3}{2}\lambda +\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(\lambda +\frac{3}{4}\right)^{2}}=\sqrt{-\frac{7}{16}}
Take the square root of both sides of the equation.
\lambda +\frac{3}{4}=\frac{\sqrt{7}i}{4} \lambda +\frac{3}{4}=-\frac{\sqrt{7}i}{4}
Simplify.
\lambda =\frac{-3+\sqrt{7}i}{4} \lambda =\frac{-\sqrt{7}i-3}{4}
Subtract \frac{3}{4} from both sides of the equation.