Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

7\left(4\times 15+3\right)\left(x-\frac{1\times 7+2}{7}\right)=15x\left(2\times 7+1\right)-7\left(4\times 15+3\right)x
Multiply both sides of the equation by 105, the least common multiple of 15,7.
7\left(60+3\right)\left(x-\frac{1\times 7+2}{7}\right)=15x\left(2\times 7+1\right)-7\left(4\times 15+3\right)x
Multiply 4 and 15 to get 60.
7\times 63\left(x-\frac{1\times 7+2}{7}\right)=15x\left(2\times 7+1\right)-7\left(4\times 15+3\right)x
Add 60 and 3 to get 63.
441\left(x-\frac{1\times 7+2}{7}\right)=15x\left(2\times 7+1\right)-7\left(4\times 15+3\right)x
Multiply 7 and 63 to get 441.
441\left(x-\frac{7+2}{7}\right)=15x\left(2\times 7+1\right)-7\left(4\times 15+3\right)x
Multiply 1 and 7 to get 7.
441\left(x-\frac{9}{7}\right)=15x\left(2\times 7+1\right)-7\left(4\times 15+3\right)x
Add 7 and 2 to get 9.
441x+441\left(-\frac{9}{7}\right)=15x\left(2\times 7+1\right)-7\left(4\times 15+3\right)x
Use the distributive property to multiply 441 by x-\frac{9}{7}.
441x+\frac{441\left(-9\right)}{7}=15x\left(2\times 7+1\right)-7\left(4\times 15+3\right)x
Express 441\left(-\frac{9}{7}\right) as a single fraction.
441x+\frac{-3969}{7}=15x\left(2\times 7+1\right)-7\left(4\times 15+3\right)x
Multiply 441 and -9 to get -3969.
441x-567=15x\left(2\times 7+1\right)-7\left(4\times 15+3\right)x
Divide -3969 by 7 to get -567.
441x-567=15x\left(14+1\right)-7\left(4\times 15+3\right)x
Multiply 2 and 7 to get 14.
441x-567=15x\times 15-7\left(4\times 15+3\right)x
Add 14 and 1 to get 15.
441x-567=225x-7\left(4\times 15+3\right)x
Multiply 15 and 15 to get 225.
441x-567=225x-7\left(60+3\right)x
Multiply 4 and 15 to get 60.
441x-567=225x-7\times 63x
Add 60 and 3 to get 63.
441x-567=225x-441x
Multiply 7 and 63 to get 441.
441x-567=-216x
Combine 225x and -441x to get -216x.
441x-567+216x=0
Add 216x to both sides.
657x-567=0
Combine 441x and 216x to get 657x.
657x=567
Add 567 to both sides. Anything plus zero gives itself.
x=\frac{567}{657}
Divide both sides by 657.
x=\frac{63}{73}
Reduce the fraction \frac{567}{657} to lowest terms by extracting and canceling out 9.