Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

105\left(4\times 13+3\right)\left(x-\frac{1\times 7+2}{7}\right)=195x\left(2\times 7+1\right)-91\left(4\times 15+3\right)x
Multiply both sides of the equation by 1365, the least common multiple of 13,7,15.
105\left(52+3\right)\left(x-\frac{1\times 7+2}{7}\right)=195x\left(2\times 7+1\right)-91\left(4\times 15+3\right)x
Multiply 4 and 13 to get 52.
105\times 55\left(x-\frac{1\times 7+2}{7}\right)=195x\left(2\times 7+1\right)-91\left(4\times 15+3\right)x
Add 52 and 3 to get 55.
5775\left(x-\frac{1\times 7+2}{7}\right)=195x\left(2\times 7+1\right)-91\left(4\times 15+3\right)x
Multiply 105 and 55 to get 5775.
5775\left(x-\frac{7+2}{7}\right)=195x\left(2\times 7+1\right)-91\left(4\times 15+3\right)x
Multiply 1 and 7 to get 7.
5775\left(x-\frac{9}{7}\right)=195x\left(2\times 7+1\right)-91\left(4\times 15+3\right)x
Add 7 and 2 to get 9.
5775x+5775\left(-\frac{9}{7}\right)=195x\left(2\times 7+1\right)-91\left(4\times 15+3\right)x
Use the distributive property to multiply 5775 by x-\frac{9}{7}.
5775x+\frac{5775\left(-9\right)}{7}=195x\left(2\times 7+1\right)-91\left(4\times 15+3\right)x
Express 5775\left(-\frac{9}{7}\right) as a single fraction.
5775x+\frac{-51975}{7}=195x\left(2\times 7+1\right)-91\left(4\times 15+3\right)x
Multiply 5775 and -9 to get -51975.
5775x-7425=195x\left(2\times 7+1\right)-91\left(4\times 15+3\right)x
Divide -51975 by 7 to get -7425.
5775x-7425=195x\left(14+1\right)-91\left(4\times 15+3\right)x
Multiply 2 and 7 to get 14.
5775x-7425=195x\times 15-91\left(4\times 15+3\right)x
Add 14 and 1 to get 15.
5775x-7425=2925x-91\left(4\times 15+3\right)x
Multiply 195 and 15 to get 2925.
5775x-7425=2925x-91\left(60+3\right)x
Multiply 4 and 15 to get 60.
5775x-7425=2925x-91\times 63x
Add 60 and 3 to get 63.
5775x-7425=2925x-5733x
Multiply 91 and 63 to get 5733.
5775x-7425=-2808x
Combine 2925x and -5733x to get -2808x.
5775x-7425+2808x=0
Add 2808x to both sides.
8583x-7425=0
Combine 5775x and 2808x to get 8583x.
8583x=7425
Add 7425 to both sides. Anything plus zero gives itself.
x=\frac{7425}{8583}
Divide both sides by 8583.
x=\frac{2475}{2861}
Reduce the fraction \frac{7425}{8583} to lowest terms by extracting and canceling out 3.