Evaluate
\frac{19}{12}\approx 1.583333333
Factor
\frac{19}{2 ^ {2} \cdot 3} = 1\frac{7}{12} = 1.5833333333333333
Quiz
Arithmetic
5 problems similar to:
4 \frac { 4 } { 5 } - ( 2 \frac { 4 } { 5 } + \frac { 5 } { 12 } )
Share
Copied to clipboard
\frac{20+4}{5}-\left(\frac{2\times 5+4}{5}+\frac{5}{12}\right)
Multiply 4 and 5 to get 20.
\frac{24}{5}-\left(\frac{2\times 5+4}{5}+\frac{5}{12}\right)
Add 20 and 4 to get 24.
\frac{24}{5}-\left(\frac{10+4}{5}+\frac{5}{12}\right)
Multiply 2 and 5 to get 10.
\frac{24}{5}-\left(\frac{14}{5}+\frac{5}{12}\right)
Add 10 and 4 to get 14.
\frac{24}{5}-\left(\frac{168}{60}+\frac{25}{60}\right)
Least common multiple of 5 and 12 is 60. Convert \frac{14}{5} and \frac{5}{12} to fractions with denominator 60.
\frac{24}{5}-\frac{168+25}{60}
Since \frac{168}{60} and \frac{25}{60} have the same denominator, add them by adding their numerators.
\frac{24}{5}-\frac{193}{60}
Add 168 and 25 to get 193.
\frac{288}{60}-\frac{193}{60}
Least common multiple of 5 and 60 is 60. Convert \frac{24}{5} and \frac{193}{60} to fractions with denominator 60.
\frac{288-193}{60}
Since \frac{288}{60} and \frac{193}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{95}{60}
Subtract 193 from 288 to get 95.
\frac{19}{12}
Reduce the fraction \frac{95}{60} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}