Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{8+4}{2}\left(\frac{3\times 32+15}{32}+\frac{4\times 4+3}{4}-\frac{-\frac{3}{8}}{\frac{6\times 16+3}{16}}\right)
Multiply 4 and 2 to get 8.
\frac{12}{2}\left(\frac{3\times 32+15}{32}+\frac{4\times 4+3}{4}-\frac{-\frac{3}{8}}{\frac{6\times 16+3}{16}}\right)
Add 8 and 4 to get 12.
6\left(\frac{3\times 32+15}{32}+\frac{4\times 4+3}{4}-\frac{-\frac{3}{8}}{\frac{6\times 16+3}{16}}\right)
Divide 12 by 2 to get 6.
6\left(\frac{96+15}{32}+\frac{4\times 4+3}{4}-\frac{-\frac{3}{8}}{\frac{6\times 16+3}{16}}\right)
Multiply 3 and 32 to get 96.
6\left(\frac{111}{32}+\frac{4\times 4+3}{4}-\frac{-\frac{3}{8}}{\frac{6\times 16+3}{16}}\right)
Add 96 and 15 to get 111.
6\left(\frac{111}{32}+\frac{16+3}{4}-\frac{-\frac{3}{8}}{\frac{6\times 16+3}{16}}\right)
Multiply 4 and 4 to get 16.
6\left(\frac{111}{32}+\frac{19}{4}-\frac{-\frac{3}{8}}{\frac{6\times 16+3}{16}}\right)
Add 16 and 3 to get 19.
6\left(\frac{111}{32}+\frac{152}{32}-\frac{-\frac{3}{8}}{\frac{6\times 16+3}{16}}\right)
Least common multiple of 32 and 4 is 32. Convert \frac{111}{32} and \frac{19}{4} to fractions with denominator 32.
6\left(\frac{111+152}{32}-\frac{-\frac{3}{8}}{\frac{6\times 16+3}{16}}\right)
Since \frac{111}{32} and \frac{152}{32} have the same denominator, add them by adding their numerators.
6\left(\frac{263}{32}-\frac{-\frac{3}{8}}{\frac{6\times 16+3}{16}}\right)
Add 111 and 152 to get 263.
6\left(\frac{263}{32}-\frac{-3\times 16}{8\left(6\times 16+3\right)}\right)
Divide -\frac{3}{8} by \frac{6\times 16+3}{16} by multiplying -\frac{3}{8} by the reciprocal of \frac{6\times 16+3}{16}.
6\left(\frac{263}{32}-\frac{-3\times 2}{3+6\times 16}\right)
Cancel out 8 in both numerator and denominator.
6\left(\frac{263}{32}-\frac{-6}{3+6\times 16}\right)
Multiply -3 and 2 to get -6.
6\left(\frac{263}{32}-\frac{-6}{3+96}\right)
Multiply 6 and 16 to get 96.
6\left(\frac{263}{32}-\frac{-6}{99}\right)
Add 3 and 96 to get 99.
6\left(\frac{263}{32}-\left(-\frac{2}{33}\right)\right)
Reduce the fraction \frac{-6}{99} to lowest terms by extracting and canceling out 3.
6\left(\frac{263}{32}+\frac{2}{33}\right)
The opposite of -\frac{2}{33} is \frac{2}{33}.
6\left(\frac{8679}{1056}+\frac{64}{1056}\right)
Least common multiple of 32 and 33 is 1056. Convert \frac{263}{32} and \frac{2}{33} to fractions with denominator 1056.
6\times \frac{8679+64}{1056}
Since \frac{8679}{1056} and \frac{64}{1056} have the same denominator, add them by adding their numerators.
6\times \frac{8743}{1056}
Add 8679 and 64 to get 8743.
\frac{6\times 8743}{1056}
Express 6\times \frac{8743}{1056} as a single fraction.
\frac{52458}{1056}
Multiply 6 and 8743 to get 52458.
\frac{8743}{176}
Reduce the fraction \frac{52458}{1056} to lowest terms by extracting and canceling out 6.