Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Share

\frac{\frac{4\times 3p}{2x-7}\times \frac{8x^{2}-98}{5y+3}}{\frac{12pq^{2}}{15y+9}}
Express 4\times \frac{3p}{2x-7} as a single fraction.
\frac{\frac{4\times 3p\left(8x^{2}-98\right)}{\left(2x-7\right)\left(5y+3\right)}}{\frac{12pq^{2}}{15y+9}}
Multiply \frac{4\times 3p}{2x-7} times \frac{8x^{2}-98}{5y+3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{4\times 3p\left(8x^{2}-98\right)}{\left(2x-7\right)\left(5y+3\right)}}{\frac{12pq^{2}}{3\left(5y+3\right)}}
Factor the expressions that are not already factored in \frac{12pq^{2}}{15y+9}.
\frac{\frac{4\times 3p\left(8x^{2}-98\right)}{\left(2x-7\right)\left(5y+3\right)}}{\frac{4pq^{2}}{5y+3}}
Cancel out 3 in both numerator and denominator.
\frac{4\times 3p\left(8x^{2}-98\right)\left(5y+3\right)}{\left(2x-7\right)\left(5y+3\right)\times 4pq^{2}}
Divide \frac{4\times 3p\left(8x^{2}-98\right)}{\left(2x-7\right)\left(5y+3\right)} by \frac{4pq^{2}}{5y+3} by multiplying \frac{4\times 3p\left(8x^{2}-98\right)}{\left(2x-7\right)\left(5y+3\right)} by the reciprocal of \frac{4pq^{2}}{5y+3}.
\frac{3\left(8x^{2}-98\right)}{\left(2x-7\right)q^{2}}
Cancel out 4p\left(5y+3\right) in both numerator and denominator.
\frac{2\times 3\left(2x-7\right)\left(2x+7\right)}{\left(2x-7\right)q^{2}}
Factor the expressions that are not already factored.
\frac{2\times 3\left(2x+7\right)}{q^{2}}
Cancel out 2x-7 in both numerator and denominator.
\frac{12x+42}{q^{2}}
Expand the expression.
\frac{\frac{4\times 3p}{2x-7}\times \frac{8x^{2}-98}{5y+3}}{\frac{12pq^{2}}{15y+9}}
Express 4\times \frac{3p}{2x-7} as a single fraction.
\frac{\frac{4\times 3p\left(8x^{2}-98\right)}{\left(2x-7\right)\left(5y+3\right)}}{\frac{12pq^{2}}{15y+9}}
Multiply \frac{4\times 3p}{2x-7} times \frac{8x^{2}-98}{5y+3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{4\times 3p\left(8x^{2}-98\right)}{\left(2x-7\right)\left(5y+3\right)}}{\frac{12pq^{2}}{3\left(5y+3\right)}}
Factor the expressions that are not already factored in \frac{12pq^{2}}{15y+9}.
\frac{\frac{4\times 3p\left(8x^{2}-98\right)}{\left(2x-7\right)\left(5y+3\right)}}{\frac{4pq^{2}}{5y+3}}
Cancel out 3 in both numerator and denominator.
\frac{4\times 3p\left(8x^{2}-98\right)\left(5y+3\right)}{\left(2x-7\right)\left(5y+3\right)\times 4pq^{2}}
Divide \frac{4\times 3p\left(8x^{2}-98\right)}{\left(2x-7\right)\left(5y+3\right)} by \frac{4pq^{2}}{5y+3} by multiplying \frac{4\times 3p\left(8x^{2}-98\right)}{\left(2x-7\right)\left(5y+3\right)} by the reciprocal of \frac{4pq^{2}}{5y+3}.
\frac{3\left(8x^{2}-98\right)}{\left(2x-7\right)q^{2}}
Cancel out 4p\left(5y+3\right) in both numerator and denominator.
\frac{2\times 3\left(2x-7\right)\left(2x+7\right)}{\left(2x-7\right)q^{2}}
Factor the expressions that are not already factored.
\frac{2\times 3\left(2x+7\right)}{q^{2}}
Cancel out 2x-7 in both numerator and denominator.
\frac{12x+42}{q^{2}}
Expand the expression.