Evaluate
\frac{65}{18}\approx 3.611111111
Factor
\frac{5 \cdot 13}{2 \cdot 3 ^ {2}} = 3\frac{11}{18} = 3.611111111111111
Quiz
Arithmetic
5 problems similar to:
4 \frac { 3 } { 2 } + 5 \frac { 4 } { 9 } - 6 \frac { 8 } { 6 } =
Share
Copied to clipboard
\frac{8+3}{2}+\frac{5\times 9+4}{9}-\frac{6\times 6+8}{6}
Multiply 4 and 2 to get 8.
\frac{11}{2}+\frac{5\times 9+4}{9}-\frac{6\times 6+8}{6}
Add 8 and 3 to get 11.
\frac{11}{2}+\frac{45+4}{9}-\frac{6\times 6+8}{6}
Multiply 5 and 9 to get 45.
\frac{11}{2}+\frac{49}{9}-\frac{6\times 6+8}{6}
Add 45 and 4 to get 49.
\frac{99}{18}+\frac{98}{18}-\frac{6\times 6+8}{6}
Least common multiple of 2 and 9 is 18. Convert \frac{11}{2} and \frac{49}{9} to fractions with denominator 18.
\frac{99+98}{18}-\frac{6\times 6+8}{6}
Since \frac{99}{18} and \frac{98}{18} have the same denominator, add them by adding their numerators.
\frac{197}{18}-\frac{6\times 6+8}{6}
Add 99 and 98 to get 197.
\frac{197}{18}-\frac{36+8}{6}
Multiply 6 and 6 to get 36.
\frac{197}{18}-\frac{44}{6}
Add 36 and 8 to get 44.
\frac{197}{18}-\frac{22}{3}
Reduce the fraction \frac{44}{6} to lowest terms by extracting and canceling out 2.
\frac{197}{18}-\frac{132}{18}
Least common multiple of 18 and 3 is 18. Convert \frac{197}{18} and \frac{22}{3} to fractions with denominator 18.
\frac{197-132}{18}
Since \frac{197}{18} and \frac{132}{18} have the same denominator, subtract them by subtracting their numerators.
\frac{65}{18}
Subtract 132 from 197 to get 65.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}