Solve for x
x=-3
Graph
Share
Copied to clipboard
4\times 10+3-10\left(\frac{2\times 5+2}{5}x+\frac{5\times 2+1}{2}\right)=5\left(\left(-\frac{3\times 5+3}{5}\right)x+\frac{1\times 5+1}{5}\right)
Multiply both sides of the equation by 10, the least common multiple of 10,5,2.
40+3-10\left(\frac{2\times 5+2}{5}x+\frac{5\times 2+1}{2}\right)=5\left(\left(-\frac{3\times 5+3}{5}\right)x+\frac{1\times 5+1}{5}\right)
Multiply 4 and 10 to get 40.
43-10\left(\frac{2\times 5+2}{5}x+\frac{5\times 2+1}{2}\right)=5\left(\left(-\frac{3\times 5+3}{5}\right)x+\frac{1\times 5+1}{5}\right)
Add 40 and 3 to get 43.
43-10\left(\frac{10+2}{5}x+\frac{5\times 2+1}{2}\right)=5\left(\left(-\frac{3\times 5+3}{5}\right)x+\frac{1\times 5+1}{5}\right)
Multiply 2 and 5 to get 10.
43-10\left(\frac{12}{5}x+\frac{5\times 2+1}{2}\right)=5\left(\left(-\frac{3\times 5+3}{5}\right)x+\frac{1\times 5+1}{5}\right)
Add 10 and 2 to get 12.
43-10\left(\frac{12}{5}x+\frac{10+1}{2}\right)=5\left(\left(-\frac{3\times 5+3}{5}\right)x+\frac{1\times 5+1}{5}\right)
Multiply 5 and 2 to get 10.
43-10\left(\frac{12}{5}x+\frac{11}{2}\right)=5\left(\left(-\frac{3\times 5+3}{5}\right)x+\frac{1\times 5+1}{5}\right)
Add 10 and 1 to get 11.
43-10\times \frac{12}{5}x-10\times \frac{11}{2}=5\left(\left(-\frac{3\times 5+3}{5}\right)x+\frac{1\times 5+1}{5}\right)
Use the distributive property to multiply -10 by \frac{12}{5}x+\frac{11}{2}.
43+\frac{-10\times 12}{5}x-10\times \frac{11}{2}=5\left(\left(-\frac{3\times 5+3}{5}\right)x+\frac{1\times 5+1}{5}\right)
Express -10\times \frac{12}{5} as a single fraction.
43+\frac{-120}{5}x-10\times \frac{11}{2}=5\left(\left(-\frac{3\times 5+3}{5}\right)x+\frac{1\times 5+1}{5}\right)
Multiply -10 and 12 to get -120.
43-24x-10\times \frac{11}{2}=5\left(\left(-\frac{3\times 5+3}{5}\right)x+\frac{1\times 5+1}{5}\right)
Divide -120 by 5 to get -24.
43-24x+\frac{-10\times 11}{2}=5\left(\left(-\frac{3\times 5+3}{5}\right)x+\frac{1\times 5+1}{5}\right)
Express -10\times \frac{11}{2} as a single fraction.
43-24x+\frac{-110}{2}=5\left(\left(-\frac{3\times 5+3}{5}\right)x+\frac{1\times 5+1}{5}\right)
Multiply -10 and 11 to get -110.
43-24x-55=5\left(\left(-\frac{3\times 5+3}{5}\right)x+\frac{1\times 5+1}{5}\right)
Divide -110 by 2 to get -55.
-12-24x=5\left(\left(-\frac{3\times 5+3}{5}\right)x+\frac{1\times 5+1}{5}\right)
Subtract 55 from 43 to get -12.
-12-24x=5\left(\left(-\frac{15+3}{5}\right)x+\frac{1\times 5+1}{5}\right)
Multiply 3 and 5 to get 15.
-12-24x=5\left(-\frac{18}{5}x+\frac{1\times 5+1}{5}\right)
Add 15 and 3 to get 18.
-12-24x=5\left(-\frac{18}{5}x+\frac{5+1}{5}\right)
Multiply 1 and 5 to get 5.
-12-24x=5\left(-\frac{18}{5}x+\frac{6}{5}\right)
Add 5 and 1 to get 6.
-12-24x=5\left(-\frac{18}{5}\right)x+5\times \frac{6}{5}
Use the distributive property to multiply 5 by -\frac{18}{5}x+\frac{6}{5}.
-12-24x=-18x+5\times \frac{6}{5}
Cancel out 5 and 5.
-12-24x=-18x+6
Cancel out 5 and 5.
-12-24x+18x=6
Add 18x to both sides.
-12-6x=6
Combine -24x and 18x to get -6x.
-6x=6+12
Add 12 to both sides.
-6x=18
Add 6 and 12 to get 18.
x=\frac{18}{-6}
Divide both sides by -6.
x=-3
Divide 18 by -6 to get -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}