Evaluate
\frac{823}{240}\approx 3.429166667
Factor
\frac{823}{2 ^ {4} \cdot 3 \cdot 5} = 3\frac{103}{240} = 3.4291666666666667
Share
Copied to clipboard
\frac{64+25}{16}+25\times \frac{\frac{\frac{9}{16}}{\frac{125}{64}}}{\frac{-27}{8}}
Multiply 4 and 16 to get 64.
\frac{89}{16}+25\times \frac{\frac{\frac{9}{16}}{\frac{125}{64}}}{\frac{-27}{8}}
Add 64 and 25 to get 89.
\frac{89}{16}+25\times \frac{\frac{9}{16}\times 8}{\frac{125}{64}\left(-27\right)}
Divide \frac{\frac{9}{16}}{\frac{125}{64}} by \frac{-27}{8} by multiplying \frac{\frac{9}{16}}{\frac{125}{64}} by the reciprocal of \frac{-27}{8}.
\frac{89}{16}+25\times \frac{\frac{9\times 8}{16}}{\frac{125}{64}\left(-27\right)}
Express \frac{9}{16}\times 8 as a single fraction.
\frac{89}{16}+25\times \frac{\frac{72}{16}}{\frac{125}{64}\left(-27\right)}
Multiply 9 and 8 to get 72.
\frac{89}{16}+25\times \frac{\frac{9}{2}}{\frac{125}{64}\left(-27\right)}
Reduce the fraction \frac{72}{16} to lowest terms by extracting and canceling out 8.
\frac{89}{16}+25\times \frac{\frac{9}{2}}{\frac{125\left(-27\right)}{64}}
Express \frac{125}{64}\left(-27\right) as a single fraction.
\frac{89}{16}+25\times \frac{\frac{9}{2}}{\frac{-3375}{64}}
Multiply 125 and -27 to get -3375.
\frac{89}{16}+25\times \frac{\frac{9}{2}}{-\frac{3375}{64}}
Fraction \frac{-3375}{64} can be rewritten as -\frac{3375}{64} by extracting the negative sign.
\frac{89}{16}+25\times \frac{9}{2}\left(-\frac{64}{3375}\right)
Divide \frac{9}{2} by -\frac{3375}{64} by multiplying \frac{9}{2} by the reciprocal of -\frac{3375}{64}.
\frac{89}{16}+25\times \frac{9\left(-64\right)}{2\times 3375}
Multiply \frac{9}{2} times -\frac{64}{3375} by multiplying numerator times numerator and denominator times denominator.
\frac{89}{16}+25\times \frac{-576}{6750}
Do the multiplications in the fraction \frac{9\left(-64\right)}{2\times 3375}.
\frac{89}{16}+25\left(-\frac{32}{375}\right)
Reduce the fraction \frac{-576}{6750} to lowest terms by extracting and canceling out 18.
\frac{89}{16}+\frac{25\left(-32\right)}{375}
Express 25\left(-\frac{32}{375}\right) as a single fraction.
\frac{89}{16}+\frac{-800}{375}
Multiply 25 and -32 to get -800.
\frac{89}{16}-\frac{32}{15}
Reduce the fraction \frac{-800}{375} to lowest terms by extracting and canceling out 25.
\frac{1335}{240}-\frac{512}{240}
Least common multiple of 16 and 15 is 240. Convert \frac{89}{16} and \frac{32}{15} to fractions with denominator 240.
\frac{1335-512}{240}
Since \frac{1335}{240} and \frac{512}{240} have the same denominator, subtract them by subtracting their numerators.
\frac{823}{240}
Subtract 512 from 1335 to get 823.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}