Evaluate
\frac{96}{11}\approx 8.727272727
Factor
\frac{2 ^ {5} \cdot 3}{11} = 8\frac{8}{11} = 8.727272727272727
Quiz
Arithmetic
5 problems similar to:
4 \frac { 1 } { 7 } + 6 \frac { 8 } { 11 } - 2 \frac { 1 } { 7 }
Share
Copied to clipboard
\frac{28+1}{7}+\frac{6\times 11+8}{11}-\frac{2\times 7+1}{7}
Multiply 4 and 7 to get 28.
\frac{29}{7}+\frac{6\times 11+8}{11}-\frac{2\times 7+1}{7}
Add 28 and 1 to get 29.
\frac{29}{7}+\frac{66+8}{11}-\frac{2\times 7+1}{7}
Multiply 6 and 11 to get 66.
\frac{29}{7}+\frac{74}{11}-\frac{2\times 7+1}{7}
Add 66 and 8 to get 74.
\frac{319}{77}+\frac{518}{77}-\frac{2\times 7+1}{7}
Least common multiple of 7 and 11 is 77. Convert \frac{29}{7} and \frac{74}{11} to fractions with denominator 77.
\frac{319+518}{77}-\frac{2\times 7+1}{7}
Since \frac{319}{77} and \frac{518}{77} have the same denominator, add them by adding their numerators.
\frac{837}{77}-\frac{2\times 7+1}{7}
Add 319 and 518 to get 837.
\frac{837}{77}-\frac{14+1}{7}
Multiply 2 and 7 to get 14.
\frac{837}{77}-\frac{15}{7}
Add 14 and 1 to get 15.
\frac{837}{77}-\frac{165}{77}
Least common multiple of 77 and 7 is 77. Convert \frac{837}{77} and \frac{15}{7} to fractions with denominator 77.
\frac{837-165}{77}
Since \frac{837}{77} and \frac{165}{77} have the same denominator, subtract them by subtracting their numerators.
\frac{672}{77}
Subtract 165 from 837 to get 672.
\frac{96}{11}
Reduce the fraction \frac{672}{77} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}