Evaluate
\frac{33}{2}=16.5
Factor
\frac{3 \cdot 11}{2} = 16\frac{1}{2} = 16.5
Share
Copied to clipboard
\frac{16+1}{4}+\frac{7}{8}+\frac{2\times 2+1}{2}+\frac{3\times 4+1}{4}+\frac{1}{2}+\frac{5\times 8+1}{8}
Multiply 4 and 4 to get 16.
\frac{17}{4}+\frac{7}{8}+\frac{2\times 2+1}{2}+\frac{3\times 4+1}{4}+\frac{1}{2}+\frac{5\times 8+1}{8}
Add 16 and 1 to get 17.
\frac{34}{8}+\frac{7}{8}+\frac{2\times 2+1}{2}+\frac{3\times 4+1}{4}+\frac{1}{2}+\frac{5\times 8+1}{8}
Least common multiple of 4 and 8 is 8. Convert \frac{17}{4} and \frac{7}{8} to fractions with denominator 8.
\frac{34+7}{8}+\frac{2\times 2+1}{2}+\frac{3\times 4+1}{4}+\frac{1}{2}+\frac{5\times 8+1}{8}
Since \frac{34}{8} and \frac{7}{8} have the same denominator, add them by adding their numerators.
\frac{41}{8}+\frac{2\times 2+1}{2}+\frac{3\times 4+1}{4}+\frac{1}{2}+\frac{5\times 8+1}{8}
Add 34 and 7 to get 41.
\frac{41}{8}+\frac{4+1}{2}+\frac{3\times 4+1}{4}+\frac{1}{2}+\frac{5\times 8+1}{8}
Multiply 2 and 2 to get 4.
\frac{41}{8}+\frac{5}{2}+\frac{3\times 4+1}{4}+\frac{1}{2}+\frac{5\times 8+1}{8}
Add 4 and 1 to get 5.
\frac{41}{8}+\frac{20}{8}+\frac{3\times 4+1}{4}+\frac{1}{2}+\frac{5\times 8+1}{8}
Least common multiple of 8 and 2 is 8. Convert \frac{41}{8} and \frac{5}{2} to fractions with denominator 8.
\frac{41+20}{8}+\frac{3\times 4+1}{4}+\frac{1}{2}+\frac{5\times 8+1}{8}
Since \frac{41}{8} and \frac{20}{8} have the same denominator, add them by adding their numerators.
\frac{61}{8}+\frac{3\times 4+1}{4}+\frac{1}{2}+\frac{5\times 8+1}{8}
Add 41 and 20 to get 61.
\frac{61}{8}+\frac{12+1}{4}+\frac{1}{2}+\frac{5\times 8+1}{8}
Multiply 3 and 4 to get 12.
\frac{61}{8}+\frac{13}{4}+\frac{1}{2}+\frac{5\times 8+1}{8}
Add 12 and 1 to get 13.
\frac{61}{8}+\frac{26}{8}+\frac{1}{2}+\frac{5\times 8+1}{8}
Least common multiple of 8 and 4 is 8. Convert \frac{61}{8} and \frac{13}{4} to fractions with denominator 8.
\frac{61+26}{8}+\frac{1}{2}+\frac{5\times 8+1}{8}
Since \frac{61}{8} and \frac{26}{8} have the same denominator, add them by adding their numerators.
\frac{87}{8}+\frac{1}{2}+\frac{5\times 8+1}{8}
Add 61 and 26 to get 87.
\frac{87}{8}+\frac{4}{8}+\frac{5\times 8+1}{8}
Least common multiple of 8 and 2 is 8. Convert \frac{87}{8} and \frac{1}{2} to fractions with denominator 8.
\frac{87+4}{8}+\frac{5\times 8+1}{8}
Since \frac{87}{8} and \frac{4}{8} have the same denominator, add them by adding their numerators.
\frac{91}{8}+\frac{5\times 8+1}{8}
Add 87 and 4 to get 91.
\frac{91}{8}+\frac{40+1}{8}
Multiply 5 and 8 to get 40.
\frac{91}{8}+\frac{41}{8}
Add 40 and 1 to get 41.
\frac{91+41}{8}
Since \frac{91}{8} and \frac{41}{8} have the same denominator, add them by adding their numerators.
\frac{132}{8}
Add 91 and 41 to get 132.
\frac{33}{2}
Reduce the fraction \frac{132}{8} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}