Evaluate
\frac{64}{15}\approx 4.266666667
Factor
\frac{2 ^ {6}}{3 \cdot 5} = 4\frac{4}{15} = 4.266666666666667
Share
Copied to clipboard
\frac{12+1}{3}+\frac{5}{6}-\frac{3}{5}\times \frac{3}{2}
Multiply 4 and 3 to get 12.
\frac{13}{3}+\frac{5}{6}-\frac{3}{5}\times \frac{3}{2}
Add 12 and 1 to get 13.
\frac{26}{6}+\frac{5}{6}-\frac{3}{5}\times \frac{3}{2}
Least common multiple of 3 and 6 is 6. Convert \frac{13}{3} and \frac{5}{6} to fractions with denominator 6.
\frac{26+5}{6}-\frac{3}{5}\times \frac{3}{2}
Since \frac{26}{6} and \frac{5}{6} have the same denominator, add them by adding their numerators.
\frac{31}{6}-\frac{3}{5}\times \frac{3}{2}
Add 26 and 5 to get 31.
\frac{31}{6}-\frac{3\times 3}{5\times 2}
Multiply \frac{3}{5} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{31}{6}-\frac{9}{10}
Do the multiplications in the fraction \frac{3\times 3}{5\times 2}.
\frac{155}{30}-\frac{27}{30}
Least common multiple of 6 and 10 is 30. Convert \frac{31}{6} and \frac{9}{10} to fractions with denominator 30.
\frac{155-27}{30}
Since \frac{155}{30} and \frac{27}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{128}{30}
Subtract 27 from 155 to get 128.
\frac{64}{15}
Reduce the fraction \frac{128}{30} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}