Evaluate
\frac{861}{100}=8.61
Factor
\frac{3 \cdot 7 \cdot 41}{2 ^ {2} \cdot 5 ^ {2}} = 8\frac{61}{100} = 8.61
Share
Copied to clipboard
\frac{40+1}{10}\left(\frac{2\times 2+1}{2}-\left(\frac{5}{6}-\left(\frac{2}{5}+\frac{3}{10}-\frac{4}{15}\right)\right)\right)
Multiply 4 and 10 to get 40.
\frac{41}{10}\left(\frac{2\times 2+1}{2}-\left(\frac{5}{6}-\left(\frac{2}{5}+\frac{3}{10}-\frac{4}{15}\right)\right)\right)
Add 40 and 1 to get 41.
\frac{41}{10}\left(\frac{4+1}{2}-\left(\frac{5}{6}-\left(\frac{2}{5}+\frac{3}{10}-\frac{4}{15}\right)\right)\right)
Multiply 2 and 2 to get 4.
\frac{41}{10}\left(\frac{5}{2}-\left(\frac{5}{6}-\left(\frac{2}{5}+\frac{3}{10}-\frac{4}{15}\right)\right)\right)
Add 4 and 1 to get 5.
\frac{41}{10}\left(\frac{5}{2}-\left(\frac{5}{6}-\left(\frac{4}{10}+\frac{3}{10}-\frac{4}{15}\right)\right)\right)
Least common multiple of 5 and 10 is 10. Convert \frac{2}{5} and \frac{3}{10} to fractions with denominator 10.
\frac{41}{10}\left(\frac{5}{2}-\left(\frac{5}{6}-\left(\frac{4+3}{10}-\frac{4}{15}\right)\right)\right)
Since \frac{4}{10} and \frac{3}{10} have the same denominator, add them by adding their numerators.
\frac{41}{10}\left(\frac{5}{2}-\left(\frac{5}{6}-\left(\frac{7}{10}-\frac{4}{15}\right)\right)\right)
Add 4 and 3 to get 7.
\frac{41}{10}\left(\frac{5}{2}-\left(\frac{5}{6}-\left(\frac{21}{30}-\frac{8}{30}\right)\right)\right)
Least common multiple of 10 and 15 is 30. Convert \frac{7}{10} and \frac{4}{15} to fractions with denominator 30.
\frac{41}{10}\left(\frac{5}{2}-\left(\frac{5}{6}-\frac{21-8}{30}\right)\right)
Since \frac{21}{30} and \frac{8}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{41}{10}\left(\frac{5}{2}-\left(\frac{5}{6}-\frac{13}{30}\right)\right)
Subtract 8 from 21 to get 13.
\frac{41}{10}\left(\frac{5}{2}-\left(\frac{25}{30}-\frac{13}{30}\right)\right)
Least common multiple of 6 and 30 is 30. Convert \frac{5}{6} and \frac{13}{30} to fractions with denominator 30.
\frac{41}{10}\left(\frac{5}{2}-\frac{25-13}{30}\right)
Since \frac{25}{30} and \frac{13}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{41}{10}\left(\frac{5}{2}-\frac{12}{30}\right)
Subtract 13 from 25 to get 12.
\frac{41}{10}\left(\frac{5}{2}-\frac{2}{5}\right)
Reduce the fraction \frac{12}{30} to lowest terms by extracting and canceling out 6.
\frac{41}{10}\left(\frac{25}{10}-\frac{4}{10}\right)
Least common multiple of 2 and 5 is 10. Convert \frac{5}{2} and \frac{2}{5} to fractions with denominator 10.
\frac{41}{10}\times \frac{25-4}{10}
Since \frac{25}{10} and \frac{4}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{41}{10}\times \frac{21}{10}
Subtract 4 from 25 to get 21.
\frac{41\times 21}{10\times 10}
Multiply \frac{41}{10} times \frac{21}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{861}{100}
Do the multiplications in the fraction \frac{41\times 21}{10\times 10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}