Evaluate
6
Factor
2\times 3
Share
Copied to clipboard
\frac{4\times 3}{1\times 3+2}+6\times \frac{3}{5}
Divide 4 by \frac{1\times 3+2}{3} by multiplying 4 by the reciprocal of \frac{1\times 3+2}{3}.
\frac{12}{1\times 3+2}+6\times \frac{3}{5}
Multiply 4 and 3 to get 12.
\frac{12}{3+2}+6\times \frac{3}{5}
Multiply 1 and 3 to get 3.
\frac{12}{5}+6\times \frac{3}{5}
Add 3 and 2 to get 5.
\frac{12}{5}+\frac{6\times 3}{5}
Express 6\times \frac{3}{5} as a single fraction.
\frac{12}{5}+\frac{18}{5}
Multiply 6 and 3 to get 18.
\frac{12+18}{5}
Since \frac{12}{5} and \frac{18}{5} have the same denominator, add them by adding their numerators.
\frac{30}{5}
Add 12 and 18 to get 30.
6
Divide 30 by 5 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}