Solve for x
x\in \left(-\infty,-\frac{1}{2}\right)\cup \left(0,\infty\right)
Graph
Share
Copied to clipboard
\frac{4}{x}-\frac{3x}{x}>\frac{2}{x}-7
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{x}{x}.
\frac{4-3x}{x}>\frac{2}{x}-7
Since \frac{4}{x} and \frac{3x}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{4-3x}{x}>\frac{2}{x}-\frac{7x}{x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 7 times \frac{x}{x}.
\frac{4-3x}{x}>\frac{2-7x}{x}
Since \frac{2}{x} and \frac{7x}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{4-3x}{x}-\frac{2-7x}{x}>0
Subtract \frac{2-7x}{x} from both sides.
\frac{4-3x-\left(2-7x\right)}{x}>0
Since \frac{4-3x}{x} and \frac{2-7x}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{4-3x-2+7x}{x}>0
Do the multiplications in 4-3x-\left(2-7x\right).
\frac{2+4x}{x}>0
Combine like terms in 4-3x-2+7x.
4x+2<0 x<0
For the quotient to be positive, 4x+2 and x have to be both negative or both positive. Consider the case when 4x+2 and x are both negative.
x<-\frac{1}{2}
The solution satisfying both inequalities is x<-\frac{1}{2}.
x>0 4x+2>0
Consider the case when 4x+2 and x are both positive.
x>0
The solution satisfying both inequalities is x>0.
x<-\frac{1}{2}\text{; }x>0
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}