Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

32t^{2}-32t+25=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 32\times 25}}{2\times 32}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 32 for a, -32 for b, and 25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-32\right)±\sqrt{1024-4\times 32\times 25}}{2\times 32}
Square -32.
t=\frac{-\left(-32\right)±\sqrt{1024-128\times 25}}{2\times 32}
Multiply -4 times 32.
t=\frac{-\left(-32\right)±\sqrt{1024-3200}}{2\times 32}
Multiply -128 times 25.
t=\frac{-\left(-32\right)±\sqrt{-2176}}{2\times 32}
Add 1024 to -3200.
t=\frac{-\left(-32\right)±8\sqrt{34}i}{2\times 32}
Take the square root of -2176.
t=\frac{32±8\sqrt{34}i}{2\times 32}
The opposite of -32 is 32.
t=\frac{32±8\sqrt{34}i}{64}
Multiply 2 times 32.
t=\frac{32+8\sqrt{34}i}{64}
Now solve the equation t=\frac{32±8\sqrt{34}i}{64} when ± is plus. Add 32 to 8i\sqrt{34}.
t=\frac{\sqrt{34}i}{8}+\frac{1}{2}
Divide 32+8i\sqrt{34} by 64.
t=\frac{-8\sqrt{34}i+32}{64}
Now solve the equation t=\frac{32±8\sqrt{34}i}{64} when ± is minus. Subtract 8i\sqrt{34} from 32.
t=-\frac{\sqrt{34}i}{8}+\frac{1}{2}
Divide 32-8i\sqrt{34} by 64.
t=\frac{\sqrt{34}i}{8}+\frac{1}{2} t=-\frac{\sqrt{34}i}{8}+\frac{1}{2}
The equation is now solved.
32t^{2}-32t+25=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
32t^{2}-32t+25-25=-25
Subtract 25 from both sides of the equation.
32t^{2}-32t=-25
Subtracting 25 from itself leaves 0.
\frac{32t^{2}-32t}{32}=-\frac{25}{32}
Divide both sides by 32.
t^{2}+\left(-\frac{32}{32}\right)t=-\frac{25}{32}
Dividing by 32 undoes the multiplication by 32.
t^{2}-t=-\frac{25}{32}
Divide -32 by 32.
t^{2}-t+\left(-\frac{1}{2}\right)^{2}=-\frac{25}{32}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-t+\frac{1}{4}=-\frac{25}{32}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
t^{2}-t+\frac{1}{4}=-\frac{17}{32}
Add -\frac{25}{32} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{1}{2}\right)^{2}=-\frac{17}{32}
Factor t^{2}-t+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{17}{32}}
Take the square root of both sides of the equation.
t-\frac{1}{2}=\frac{\sqrt{34}i}{8} t-\frac{1}{2}=-\frac{\sqrt{34}i}{8}
Simplify.
t=\frac{\sqrt{34}i}{8}+\frac{1}{2} t=-\frac{\sqrt{34}i}{8}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.