Skip to main content
Solve for c
Tick mark Image

Similar Problems from Web Search

Share

4\times 9+10\times 6^{2}=c^{2}
Calculate 3 to the power of 2 and get 9.
36+10\times 6^{2}=c^{2}
Multiply 4 and 9 to get 36.
36+10\times 36=c^{2}
Calculate 6 to the power of 2 and get 36.
36+360=c^{2}
Multiply 10 and 36 to get 360.
396=c^{2}
Add 36 and 360 to get 396.
c^{2}=396
Swap sides so that all variable terms are on the left hand side.
c=6\sqrt{11} c=-6\sqrt{11}
Take the square root of both sides of the equation.
4\times 9+10\times 6^{2}=c^{2}
Calculate 3 to the power of 2 and get 9.
36+10\times 6^{2}=c^{2}
Multiply 4 and 9 to get 36.
36+10\times 36=c^{2}
Calculate 6 to the power of 2 and get 36.
36+360=c^{2}
Multiply 10 and 36 to get 360.
396=c^{2}
Add 36 and 360 to get 396.
c^{2}=396
Swap sides so that all variable terms are on the left hand side.
c^{2}-396=0
Subtract 396 from both sides.
c=\frac{0±\sqrt{0^{2}-4\left(-396\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -396 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{0±\sqrt{-4\left(-396\right)}}{2}
Square 0.
c=\frac{0±\sqrt{1584}}{2}
Multiply -4 times -396.
c=\frac{0±12\sqrt{11}}{2}
Take the square root of 1584.
c=6\sqrt{11}
Now solve the equation c=\frac{0±12\sqrt{11}}{2} when ± is plus.
c=-6\sqrt{11}
Now solve the equation c=\frac{0±12\sqrt{11}}{2} when ± is minus.
c=6\sqrt{11} c=-6\sqrt{11}
The equation is now solved.