Evaluate
12
Factor
2^{2}\times 3
Share
Copied to clipboard
4\left(-\frac{125}{64}\right)+3\left(-\frac{5}{4}\right)^{2}-\frac{45}{4}\left(-\frac{5}{4}\right)+\frac{17}{16}
Calculate -\frac{5}{4} to the power of 3 and get -\frac{125}{64}.
\frac{4\left(-125\right)}{64}+3\left(-\frac{5}{4}\right)^{2}-\frac{45}{4}\left(-\frac{5}{4}\right)+\frac{17}{16}
Express 4\left(-\frac{125}{64}\right) as a single fraction.
\frac{-500}{64}+3\left(-\frac{5}{4}\right)^{2}-\frac{45}{4}\left(-\frac{5}{4}\right)+\frac{17}{16}
Multiply 4 and -125 to get -500.
-\frac{125}{16}+3\left(-\frac{5}{4}\right)^{2}-\frac{45}{4}\left(-\frac{5}{4}\right)+\frac{17}{16}
Reduce the fraction \frac{-500}{64} to lowest terms by extracting and canceling out 4.
-\frac{125}{16}+3\times \frac{25}{16}-\frac{45}{4}\left(-\frac{5}{4}\right)+\frac{17}{16}
Calculate -\frac{5}{4} to the power of 2 and get \frac{25}{16}.
-\frac{125}{16}+\frac{3\times 25}{16}-\frac{45}{4}\left(-\frac{5}{4}\right)+\frac{17}{16}
Express 3\times \frac{25}{16} as a single fraction.
-\frac{125}{16}+\frac{75}{16}-\frac{45}{4}\left(-\frac{5}{4}\right)+\frac{17}{16}
Multiply 3 and 25 to get 75.
\frac{-125+75}{16}-\frac{45}{4}\left(-\frac{5}{4}\right)+\frac{17}{16}
Since -\frac{125}{16} and \frac{75}{16} have the same denominator, add them by adding their numerators.
\frac{-50}{16}-\frac{45}{4}\left(-\frac{5}{4}\right)+\frac{17}{16}
Add -125 and 75 to get -50.
-\frac{25}{8}-\frac{45}{4}\left(-\frac{5}{4}\right)+\frac{17}{16}
Reduce the fraction \frac{-50}{16} to lowest terms by extracting and canceling out 2.
-\frac{25}{8}-\frac{45\left(-5\right)}{4\times 4}+\frac{17}{16}
Multiply \frac{45}{4} times -\frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
-\frac{25}{8}-\frac{-225}{16}+\frac{17}{16}
Do the multiplications in the fraction \frac{45\left(-5\right)}{4\times 4}.
-\frac{25}{8}-\left(-\frac{225}{16}\right)+\frac{17}{16}
Fraction \frac{-225}{16} can be rewritten as -\frac{225}{16} by extracting the negative sign.
-\frac{25}{8}+\frac{225}{16}+\frac{17}{16}
The opposite of -\frac{225}{16} is \frac{225}{16}.
-\frac{50}{16}+\frac{225}{16}+\frac{17}{16}
Least common multiple of 8 and 16 is 16. Convert -\frac{25}{8} and \frac{225}{16} to fractions with denominator 16.
\frac{-50+225}{16}+\frac{17}{16}
Since -\frac{50}{16} and \frac{225}{16} have the same denominator, add them by adding their numerators.
\frac{175}{16}+\frac{17}{16}
Add -50 and 225 to get 175.
\frac{175+17}{16}
Since \frac{175}{16} and \frac{17}{16} have the same denominator, add them by adding their numerators.
\frac{192}{16}
Add 175 and 17 to get 192.
12
Divide 192 by 16 to get 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}