Solve for x
x = \frac{6250 \sqrt{8426769809} - 573343750}{11191} \approx 34.871219685
x=\frac{-6250\sqrt{8426769809}-573343750}{11191}\approx -102500.021787105
Graph
Share
Copied to clipboard
4\left(x+100000\right)\left(x+100000\right)=11195\left(x+102500\right)x
Variable x cannot be equal to any of the values -102500,-100000 since division by zero is not defined. Multiply both sides of the equation by \left(x+100000\right)\left(x+102500\right), the least common multiple of x+102500,x+100000.
4\left(x+100000\right)^{2}=11195\left(x+102500\right)x
Multiply x+100000 and x+100000 to get \left(x+100000\right)^{2}.
4\left(x^{2}+200000x+10000000000\right)=11195\left(x+102500\right)x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+100000\right)^{2}.
4x^{2}+800000x+40000000000=11195\left(x+102500\right)x
Use the distributive property to multiply 4 by x^{2}+200000x+10000000000.
4x^{2}+800000x+40000000000=\left(11195x+1147487500\right)x
Use the distributive property to multiply 11195 by x+102500.
4x^{2}+800000x+40000000000=11195x^{2}+1147487500x
Use the distributive property to multiply 11195x+1147487500 by x.
4x^{2}+800000x+40000000000-11195x^{2}=1147487500x
Subtract 11195x^{2} from both sides.
-11191x^{2}+800000x+40000000000=1147487500x
Combine 4x^{2} and -11195x^{2} to get -11191x^{2}.
-11191x^{2}+800000x+40000000000-1147487500x=0
Subtract 1147487500x from both sides.
-11191x^{2}-1146687500x+40000000000=0
Combine 800000x and -1147487500x to get -1146687500x.
x=\frac{-\left(-1146687500\right)±\sqrt{\left(-1146687500\right)^{2}-4\left(-11191\right)\times 40000000000}}{2\left(-11191\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -11191 for a, -1146687500 for b, and 40000000000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1146687500\right)±\sqrt{1314892222656250000-4\left(-11191\right)\times 40000000000}}{2\left(-11191\right)}
Square -1146687500.
x=\frac{-\left(-1146687500\right)±\sqrt{1314892222656250000+44764\times 40000000000}}{2\left(-11191\right)}
Multiply -4 times -11191.
x=\frac{-\left(-1146687500\right)±\sqrt{1314892222656250000+1790560000000000}}{2\left(-11191\right)}
Multiply 44764 times 40000000000.
x=\frac{-\left(-1146687500\right)±\sqrt{1316682782656250000}}{2\left(-11191\right)}
Add 1314892222656250000 to 1790560000000000.
x=\frac{-\left(-1146687500\right)±12500\sqrt{8426769809}}{2\left(-11191\right)}
Take the square root of 1316682782656250000.
x=\frac{1146687500±12500\sqrt{8426769809}}{2\left(-11191\right)}
The opposite of -1146687500 is 1146687500.
x=\frac{1146687500±12500\sqrt{8426769809}}{-22382}
Multiply 2 times -11191.
x=\frac{12500\sqrt{8426769809}+1146687500}{-22382}
Now solve the equation x=\frac{1146687500±12500\sqrt{8426769809}}{-22382} when ± is plus. Add 1146687500 to 12500\sqrt{8426769809}.
x=\frac{-6250\sqrt{8426769809}-573343750}{11191}
Divide 1146687500+12500\sqrt{8426769809} by -22382.
x=\frac{1146687500-12500\sqrt{8426769809}}{-22382}
Now solve the equation x=\frac{1146687500±12500\sqrt{8426769809}}{-22382} when ± is minus. Subtract 12500\sqrt{8426769809} from 1146687500.
x=\frac{6250\sqrt{8426769809}-573343750}{11191}
Divide 1146687500-12500\sqrt{8426769809} by -22382.
x=\frac{-6250\sqrt{8426769809}-573343750}{11191} x=\frac{6250\sqrt{8426769809}-573343750}{11191}
The equation is now solved.
4\left(x+100000\right)\left(x+100000\right)=11195\left(x+102500\right)x
Variable x cannot be equal to any of the values -102500,-100000 since division by zero is not defined. Multiply both sides of the equation by \left(x+100000\right)\left(x+102500\right), the least common multiple of x+102500,x+100000.
4\left(x+100000\right)^{2}=11195\left(x+102500\right)x
Multiply x+100000 and x+100000 to get \left(x+100000\right)^{2}.
4\left(x^{2}+200000x+10000000000\right)=11195\left(x+102500\right)x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+100000\right)^{2}.
4x^{2}+800000x+40000000000=11195\left(x+102500\right)x
Use the distributive property to multiply 4 by x^{2}+200000x+10000000000.
4x^{2}+800000x+40000000000=\left(11195x+1147487500\right)x
Use the distributive property to multiply 11195 by x+102500.
4x^{2}+800000x+40000000000=11195x^{2}+1147487500x
Use the distributive property to multiply 11195x+1147487500 by x.
4x^{2}+800000x+40000000000-11195x^{2}=1147487500x
Subtract 11195x^{2} from both sides.
-11191x^{2}+800000x+40000000000=1147487500x
Combine 4x^{2} and -11195x^{2} to get -11191x^{2}.
-11191x^{2}+800000x+40000000000-1147487500x=0
Subtract 1147487500x from both sides.
-11191x^{2}-1146687500x+40000000000=0
Combine 800000x and -1147487500x to get -1146687500x.
-11191x^{2}-1146687500x=-40000000000
Subtract 40000000000 from both sides. Anything subtracted from zero gives its negation.
\frac{-11191x^{2}-1146687500x}{-11191}=-\frac{40000000000}{-11191}
Divide both sides by -11191.
x^{2}+\left(-\frac{1146687500}{-11191}\right)x=-\frac{40000000000}{-11191}
Dividing by -11191 undoes the multiplication by -11191.
x^{2}+\frac{1146687500}{11191}x=-\frac{40000000000}{-11191}
Divide -1146687500 by -11191.
x^{2}+\frac{1146687500}{11191}x=\frac{40000000000}{11191}
Divide -40000000000 by -11191.
x^{2}+\frac{1146687500}{11191}x+\left(\frac{573343750}{11191}\right)^{2}=\frac{40000000000}{11191}+\left(\frac{573343750}{11191}\right)^{2}
Divide \frac{1146687500}{11191}, the coefficient of the x term, by 2 to get \frac{573343750}{11191}. Then add the square of \frac{573343750}{11191} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1146687500}{11191}x+\frac{328723055664062500}{125238481}=\frac{40000000000}{11191}+\frac{328723055664062500}{125238481}
Square \frac{573343750}{11191} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1146687500}{11191}x+\frac{328723055664062500}{125238481}=\frac{329170695664062500}{125238481}
Add \frac{40000000000}{11191} to \frac{328723055664062500}{125238481} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{573343750}{11191}\right)^{2}=\frac{329170695664062500}{125238481}
Factor x^{2}+\frac{1146687500}{11191}x+\frac{328723055664062500}{125238481}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{573343750}{11191}\right)^{2}}=\sqrt{\frac{329170695664062500}{125238481}}
Take the square root of both sides of the equation.
x+\frac{573343750}{11191}=\frac{6250\sqrt{8426769809}}{11191} x+\frac{573343750}{11191}=-\frac{6250\sqrt{8426769809}}{11191}
Simplify.
x=\frac{6250\sqrt{8426769809}-573343750}{11191} x=\frac{-6250\sqrt{8426769809}-573343750}{11191}
Subtract \frac{573343750}{11191} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}