Solve for x
x = \frac{61}{17} = 3\frac{10}{17} \approx 3.588235294
Graph
Share
Copied to clipboard
4\left(9-5x+10\right)+3\left(3x-5\right)=2\left(3\left(x-5\right)+17\right)-4
Use the distributive property to multiply -5 by x-2.
4\left(19-5x\right)+3\left(3x-5\right)=2\left(3\left(x-5\right)+17\right)-4
Add 9 and 10 to get 19.
76-20x+3\left(3x-5\right)=2\left(3\left(x-5\right)+17\right)-4
Use the distributive property to multiply 4 by 19-5x.
76-20x+9x-15=2\left(3\left(x-5\right)+17\right)-4
Use the distributive property to multiply 3 by 3x-5.
76-11x-15=2\left(3\left(x-5\right)+17\right)-4
Combine -20x and 9x to get -11x.
61-11x=2\left(3\left(x-5\right)+17\right)-4
Subtract 15 from 76 to get 61.
61-11x=2\left(3x-15+17\right)-4
Use the distributive property to multiply 3 by x-5.
61-11x=2\left(3x+2\right)-4
Add -15 and 17 to get 2.
61-11x=6x+4-4
Use the distributive property to multiply 2 by 3x+2.
61-11x=6x
Subtract 4 from 4 to get 0.
61-11x-6x=0
Subtract 6x from both sides.
61-17x=0
Combine -11x and -6x to get -17x.
-17x=-61
Subtract 61 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-61}{-17}
Divide both sides by -17.
x=\frac{61}{17}
Fraction \frac{-61}{-17} can be simplified to \frac{61}{17} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}