Solve for y
y=\frac{3\left(x\times 64^{x}-4\right)}{4}
Graph
Share
Copied to clipboard
-4y=12-4^{3x}\times 3x
Subtract 4^{3x}\times 3x from both sides.
-4y=12-3\times 4^{3x}x
Multiply -1 and 3 to get -3.
-4y=12-3x\times 64^{x}
The equation is in standard form.
\frac{-4y}{-4}=\frac{12-3x\times 64^{x}}{-4}
Divide both sides by -4.
y=\frac{12-3x\times 64^{x}}{-4}
Dividing by -4 undoes the multiplication by -4.
y=\frac{3x\times 64^{x}}{4}-3
Divide 12-3\times 64^{x}x by -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}