Solve for x
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Share
Copied to clipboard
16-x^{2}=6^{2}-\left(6-x\right)^{2}
Calculate 4 to the power of 2 and get 16.
16-x^{2}=36-\left(6-x\right)^{2}
Calculate 6 to the power of 2 and get 36.
16-x^{2}=36-\left(36-12x+x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-x\right)^{2}.
16-x^{2}=36-36+12x-x^{2}
To find the opposite of 36-12x+x^{2}, find the opposite of each term.
16-x^{2}=12x-x^{2}
Subtract 36 from 36 to get 0.
16-x^{2}-12x=-x^{2}
Subtract 12x from both sides.
16-x^{2}-12x+x^{2}=0
Add x^{2} to both sides.
16-12x=0
Combine -x^{2} and x^{2} to get 0.
-12x=-16
Subtract 16 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-16}{-12}
Divide both sides by -12.
x=\frac{4}{3}
Reduce the fraction \frac{-16}{-12} to lowest terms by extracting and canceling out -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}