Solve for a
a=\frac{9x}{25}+\frac{16}{5}
Solve for x
x=\frac{25a-80}{9}
Graph
Share
Copied to clipboard
16\left(x-5\right)=25\left(x-a\right)
Calculate 4 to the power of 2 and get 16.
16x-80=25\left(x-a\right)
Use the distributive property to multiply 16 by x-5.
16x-80=25x-25a
Use the distributive property to multiply 25 by x-a.
25x-25a=16x-80
Swap sides so that all variable terms are on the left hand side.
-25a=16x-80-25x
Subtract 25x from both sides.
-25a=-9x-80
Combine 16x and -25x to get -9x.
\frac{-25a}{-25}=\frac{-9x-80}{-25}
Divide both sides by -25.
a=\frac{-9x-80}{-25}
Dividing by -25 undoes the multiplication by -25.
a=\frac{9x}{25}+\frac{16}{5}
Divide -9x-80 by -25.
16\left(x-5\right)=25\left(x-a\right)
Calculate 4 to the power of 2 and get 16.
16x-80=25\left(x-a\right)
Use the distributive property to multiply 16 by x-5.
16x-80=25x-25a
Use the distributive property to multiply 25 by x-a.
16x-80-25x=-25a
Subtract 25x from both sides.
-9x-80=-25a
Combine 16x and -25x to get -9x.
-9x=-25a+80
Add 80 to both sides.
-9x=80-25a
The equation is in standard form.
\frac{-9x}{-9}=\frac{80-25a}{-9}
Divide both sides by -9.
x=\frac{80-25a}{-9}
Dividing by -9 undoes the multiplication by -9.
x=\frac{25a-80}{9}
Divide -25a+80 by -9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}