Solve for a
a=-\frac{27x}{5}+32
Solve for x
x=\frac{160-5a}{27}
Graph
Share
Copied to clipboard
16\left(x-5\right)=2.5\left(x-a\right)
Calculate 4 to the power of 2 and get 16.
16x-80=2.5\left(x-a\right)
Use the distributive property to multiply 16 by x-5.
16x-80=2.5x-2.5a
Use the distributive property to multiply 2.5 by x-a.
2.5x-2.5a=16x-80
Swap sides so that all variable terms are on the left hand side.
-2.5a=16x-80-2.5x
Subtract 2.5x from both sides.
-2.5a=13.5x-80
Combine 16x and -2.5x to get 13.5x.
-2.5a=\frac{27x}{2}-80
The equation is in standard form.
\frac{-2.5a}{-2.5}=\frac{\frac{27x}{2}-80}{-2.5}
Divide both sides of the equation by -2.5, which is the same as multiplying both sides by the reciprocal of the fraction.
a=\frac{\frac{27x}{2}-80}{-2.5}
Dividing by -2.5 undoes the multiplication by -2.5.
a=-\frac{27x}{5}+32
Divide \frac{27x}{2}-80 by -2.5 by multiplying \frac{27x}{2}-80 by the reciprocal of -2.5.
16\left(x-5\right)=2.5\left(x-a\right)
Calculate 4 to the power of 2 and get 16.
16x-80=2.5\left(x-a\right)
Use the distributive property to multiply 16 by x-5.
16x-80=2.5x-2.5a
Use the distributive property to multiply 2.5 by x-a.
16x-80-2.5x=-2.5a
Subtract 2.5x from both sides.
13.5x-80=-2.5a
Combine 16x and -2.5x to get 13.5x.
13.5x=-2.5a+80
Add 80 to both sides.
13.5x=-\frac{5a}{2}+80
The equation is in standard form.
\frac{13.5x}{13.5}=\frac{-\frac{5a}{2}+80}{13.5}
Divide both sides of the equation by 13.5, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{-\frac{5a}{2}+80}{13.5}
Dividing by 13.5 undoes the multiplication by 13.5.
x=\frac{160-5a}{27}
Divide -\frac{5a}{2}+80 by 13.5 by multiplying -\frac{5a}{2}+80 by the reciprocal of 13.5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}