Solve for x
x = \frac{\sqrt{79} + 7}{4} \approx 3.972048604
x=\frac{7-\sqrt{79}}{4}\approx -0.472048604
Graph
Quiz
Quadratic Equation
5 problems similar to:
4 ^ { 2 } = x ^ { 2 } + ( \frac { 7 - 2 x } { 2 } ) ^ { 2 }
Share
Copied to clipboard
16=x^{2}+\left(\frac{7-2x}{2}\right)^{2}
Calculate 4 to the power of 2 and get 16.
16=x^{2}+\frac{\left(7-2x\right)^{2}}{2^{2}}
To raise \frac{7-2x}{2} to a power, raise both numerator and denominator to the power and then divide.
16=\frac{x^{2}\times 2^{2}}{2^{2}}+\frac{\left(7-2x\right)^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{2^{2}}{2^{2}}.
16=\frac{x^{2}\times 2^{2}+\left(7-2x\right)^{2}}{2^{2}}
Since \frac{x^{2}\times 2^{2}}{2^{2}} and \frac{\left(7-2x\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
16=\frac{4x^{2}+49-28x+4x^{2}}{2^{2}}
Do the multiplications in x^{2}\times 2^{2}+\left(7-2x\right)^{2}.
16=\frac{8x^{2}+49-28x}{2^{2}}
Combine like terms in 4x^{2}+49-28x+4x^{2}.
16=\frac{8x^{2}+49-28x}{4}
Calculate 2 to the power of 2 and get 4.
16=2x^{2}+\frac{49}{4}-7x
Divide each term of 8x^{2}+49-28x by 4 to get 2x^{2}+\frac{49}{4}-7x.
2x^{2}+\frac{49}{4}-7x=16
Swap sides so that all variable terms are on the left hand side.
2x^{2}+\frac{49}{4}-7x-16=0
Subtract 16 from both sides.
2x^{2}-\frac{15}{4}-7x=0
Subtract 16 from \frac{49}{4} to get -\frac{15}{4}.
2x^{2}-7x-\frac{15}{4}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2\left(-\frac{15}{4}\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -7 for b, and -\frac{15}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 2\left(-\frac{15}{4}\right)}}{2\times 2}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-8\left(-\frac{15}{4}\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-7\right)±\sqrt{49+30}}{2\times 2}
Multiply -8 times -\frac{15}{4}.
x=\frac{-\left(-7\right)±\sqrt{79}}{2\times 2}
Add 49 to 30.
x=\frac{7±\sqrt{79}}{2\times 2}
The opposite of -7 is 7.
x=\frac{7±\sqrt{79}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{79}+7}{4}
Now solve the equation x=\frac{7±\sqrt{79}}{4} when ± is plus. Add 7 to \sqrt{79}.
x=\frac{7-\sqrt{79}}{4}
Now solve the equation x=\frac{7±\sqrt{79}}{4} when ± is minus. Subtract \sqrt{79} from 7.
x=\frac{\sqrt{79}+7}{4} x=\frac{7-\sqrt{79}}{4}
The equation is now solved.
16=x^{2}+\left(\frac{7-2x}{2}\right)^{2}
Calculate 4 to the power of 2 and get 16.
16=x^{2}+\frac{\left(7-2x\right)^{2}}{2^{2}}
To raise \frac{7-2x}{2} to a power, raise both numerator and denominator to the power and then divide.
16=\frac{x^{2}\times 2^{2}}{2^{2}}+\frac{\left(7-2x\right)^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{2^{2}}{2^{2}}.
16=\frac{x^{2}\times 2^{2}+\left(7-2x\right)^{2}}{2^{2}}
Since \frac{x^{2}\times 2^{2}}{2^{2}} and \frac{\left(7-2x\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
16=\frac{4x^{2}+49-28x+4x^{2}}{2^{2}}
Do the multiplications in x^{2}\times 2^{2}+\left(7-2x\right)^{2}.
16=\frac{8x^{2}+49-28x}{2^{2}}
Combine like terms in 4x^{2}+49-28x+4x^{2}.
16=\frac{8x^{2}+49-28x}{4}
Calculate 2 to the power of 2 and get 4.
16=2x^{2}+\frac{49}{4}-7x
Divide each term of 8x^{2}+49-28x by 4 to get 2x^{2}+\frac{49}{4}-7x.
2x^{2}+\frac{49}{4}-7x=16
Swap sides so that all variable terms are on the left hand side.
2x^{2}-7x=16-\frac{49}{4}
Subtract \frac{49}{4} from both sides.
2x^{2}-7x=\frac{15}{4}
Subtract \frac{49}{4} from 16 to get \frac{15}{4}.
\frac{2x^{2}-7x}{2}=\frac{\frac{15}{4}}{2}
Divide both sides by 2.
x^{2}-\frac{7}{2}x=\frac{\frac{15}{4}}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{7}{2}x=\frac{15}{8}
Divide \frac{15}{4} by 2.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=\frac{15}{8}+\left(-\frac{7}{4}\right)^{2}
Divide -\frac{7}{2}, the coefficient of the x term, by 2 to get -\frac{7}{4}. Then add the square of -\frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{15}{8}+\frac{49}{16}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{79}{16}
Add \frac{15}{8} to \frac{49}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{4}\right)^{2}=\frac{79}{16}
Factor x^{2}-\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{79}{16}}
Take the square root of both sides of the equation.
x-\frac{7}{4}=\frac{\sqrt{79}}{4} x-\frac{7}{4}=-\frac{\sqrt{79}}{4}
Simplify.
x=\frac{\sqrt{79}+7}{4} x=\frac{7-\sqrt{79}}{4}
Add \frac{7}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}