Solve for x (complex solution)
x=-\frac{8\sqrt{3}i}{3}\approx -0-4.618802154i
x=\frac{8\sqrt{3}i}{3}\approx 4.618802154i
Graph
Share
Copied to clipboard
16+x^{2}=\left(\frac{x}{2}\right)^{2}
Calculate 4 to the power of 2 and get 16.
16+x^{2}=\frac{x^{2}}{2^{2}}
To raise \frac{x}{2} to a power, raise both numerator and denominator to the power and then divide.
16+x^{2}=\frac{x^{2}}{4}
Calculate 2 to the power of 2 and get 4.
16+x^{2}-\frac{x^{2}}{4}=0
Subtract \frac{x^{2}}{4} from both sides.
16+\frac{3}{4}x^{2}=0
Combine x^{2} and -\frac{x^{2}}{4} to get \frac{3}{4}x^{2}.
\frac{3}{4}x^{2}=-16
Subtract 16 from both sides. Anything subtracted from zero gives its negation.
x^{2}=-16\times \frac{4}{3}
Multiply both sides by \frac{4}{3}, the reciprocal of \frac{3}{4}.
x^{2}=-\frac{64}{3}
Multiply -16 and \frac{4}{3} to get -\frac{64}{3}.
x=\frac{8\sqrt{3}i}{3} x=-\frac{8\sqrt{3}i}{3}
The equation is now solved.
16+x^{2}=\left(\frac{x}{2}\right)^{2}
Calculate 4 to the power of 2 and get 16.
16+x^{2}=\frac{x^{2}}{2^{2}}
To raise \frac{x}{2} to a power, raise both numerator and denominator to the power and then divide.
16+x^{2}=\frac{x^{2}}{4}
Calculate 2 to the power of 2 and get 4.
16+x^{2}-\frac{x^{2}}{4}=0
Subtract \frac{x^{2}}{4} from both sides.
16+\frac{3}{4}x^{2}=0
Combine x^{2} and -\frac{x^{2}}{4} to get \frac{3}{4}x^{2}.
\frac{3}{4}x^{2}+16=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times \frac{3}{4}\times 16}}{2\times \frac{3}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{4} for a, 0 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{3}{4}\times 16}}{2\times \frac{3}{4}}
Square 0.
x=\frac{0±\sqrt{-3\times 16}}{2\times \frac{3}{4}}
Multiply -4 times \frac{3}{4}.
x=\frac{0±\sqrt{-48}}{2\times \frac{3}{4}}
Multiply -3 times 16.
x=\frac{0±4\sqrt{3}i}{2\times \frac{3}{4}}
Take the square root of -48.
x=\frac{0±4\sqrt{3}i}{\frac{3}{2}}
Multiply 2 times \frac{3}{4}.
x=\frac{8\sqrt{3}i}{3}
Now solve the equation x=\frac{0±4\sqrt{3}i}{\frac{3}{2}} when ± is plus.
x=-\frac{8\sqrt{3}i}{3}
Now solve the equation x=\frac{0±4\sqrt{3}i}{\frac{3}{2}} when ± is minus.
x=\frac{8\sqrt{3}i}{3} x=-\frac{8\sqrt{3}i}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}