Solve for x
x = \frac{\sqrt{14} + 2}{5} \approx 1.148331477
x=\frac{2-\sqrt{14}}{5}\approx -0.348331477
Graph
Share
Copied to clipboard
16+\left(2-3x\right)\left(2+3x\right)=\left(x-4\right)^{2}
Calculate 4 to the power of 2 and get 16.
16+4-\left(3x\right)^{2}=\left(x-4\right)^{2}
Consider \left(2-3x\right)\left(2+3x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
16+4-3^{2}x^{2}=\left(x-4\right)^{2}
Expand \left(3x\right)^{2}.
16+4-9x^{2}=\left(x-4\right)^{2}
Calculate 3 to the power of 2 and get 9.
20-9x^{2}=\left(x-4\right)^{2}
Add 16 and 4 to get 20.
20-9x^{2}=x^{2}-8x+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
20-9x^{2}-x^{2}=-8x+16
Subtract x^{2} from both sides.
20-10x^{2}=-8x+16
Combine -9x^{2} and -x^{2} to get -10x^{2}.
20-10x^{2}+8x=16
Add 8x to both sides.
20-10x^{2}+8x-16=0
Subtract 16 from both sides.
4-10x^{2}+8x=0
Subtract 16 from 20 to get 4.
-10x^{2}+8x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{8^{2}-4\left(-10\right)\times 4}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 8 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-10\right)\times 4}}{2\left(-10\right)}
Square 8.
x=\frac{-8±\sqrt{64+40\times 4}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-8±\sqrt{64+160}}{2\left(-10\right)}
Multiply 40 times 4.
x=\frac{-8±\sqrt{224}}{2\left(-10\right)}
Add 64 to 160.
x=\frac{-8±4\sqrt{14}}{2\left(-10\right)}
Take the square root of 224.
x=\frac{-8±4\sqrt{14}}{-20}
Multiply 2 times -10.
x=\frac{4\sqrt{14}-8}{-20}
Now solve the equation x=\frac{-8±4\sqrt{14}}{-20} when ± is plus. Add -8 to 4\sqrt{14}.
x=\frac{2-\sqrt{14}}{5}
Divide -8+4\sqrt{14} by -20.
x=\frac{-4\sqrt{14}-8}{-20}
Now solve the equation x=\frac{-8±4\sqrt{14}}{-20} when ± is minus. Subtract 4\sqrt{14} from -8.
x=\frac{\sqrt{14}+2}{5}
Divide -8-4\sqrt{14} by -20.
x=\frac{2-\sqrt{14}}{5} x=\frac{\sqrt{14}+2}{5}
The equation is now solved.
16+\left(2-3x\right)\left(2+3x\right)=\left(x-4\right)^{2}
Calculate 4 to the power of 2 and get 16.
16+4-\left(3x\right)^{2}=\left(x-4\right)^{2}
Consider \left(2-3x\right)\left(2+3x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
16+4-3^{2}x^{2}=\left(x-4\right)^{2}
Expand \left(3x\right)^{2}.
16+4-9x^{2}=\left(x-4\right)^{2}
Calculate 3 to the power of 2 and get 9.
20-9x^{2}=\left(x-4\right)^{2}
Add 16 and 4 to get 20.
20-9x^{2}=x^{2}-8x+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
20-9x^{2}-x^{2}=-8x+16
Subtract x^{2} from both sides.
20-10x^{2}=-8x+16
Combine -9x^{2} and -x^{2} to get -10x^{2}.
20-10x^{2}+8x=16
Add 8x to both sides.
-10x^{2}+8x=16-20
Subtract 20 from both sides.
-10x^{2}+8x=-4
Subtract 20 from 16 to get -4.
\frac{-10x^{2}+8x}{-10}=-\frac{4}{-10}
Divide both sides by -10.
x^{2}+\frac{8}{-10}x=-\frac{4}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-\frac{4}{5}x=-\frac{4}{-10}
Reduce the fraction \frac{8}{-10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{4}{5}x=\frac{2}{5}
Reduce the fraction \frac{-4}{-10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{4}{5}x+\left(-\frac{2}{5}\right)^{2}=\frac{2}{5}+\left(-\frac{2}{5}\right)^{2}
Divide -\frac{4}{5}, the coefficient of the x term, by 2 to get -\frac{2}{5}. Then add the square of -\frac{2}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{5}x+\frac{4}{25}=\frac{2}{5}+\frac{4}{25}
Square -\frac{2}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{5}x+\frac{4}{25}=\frac{14}{25}
Add \frac{2}{5} to \frac{4}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2}{5}\right)^{2}=\frac{14}{25}
Factor x^{2}-\frac{4}{5}x+\frac{4}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{5}\right)^{2}}=\sqrt{\frac{14}{25}}
Take the square root of both sides of the equation.
x-\frac{2}{5}=\frac{\sqrt{14}}{5} x-\frac{2}{5}=-\frac{\sqrt{14}}{5}
Simplify.
x=\frac{\sqrt{14}+2}{5} x=\frac{2-\sqrt{14}}{5}
Add \frac{2}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}