Solve for x
x=\frac{\sqrt{65}}{2}-4\approx 0.031128874
x=-\frac{\sqrt{65}}{2}-4\approx -8.031128874
Graph
Share
Copied to clipboard
4\left(x^{2}+8x\right)-1=0
Subtract 16 from 16 to get 0.
4x^{2}+32x-1=0
Use the distributive property to multiply 4 by x^{2}+8x.
x=\frac{-32±\sqrt{32^{2}-4\times 4\left(-1\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 32 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-32±\sqrt{1024-4\times 4\left(-1\right)}}{2\times 4}
Square 32.
x=\frac{-32±\sqrt{1024-16\left(-1\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-32±\sqrt{1024+16}}{2\times 4}
Multiply -16 times -1.
x=\frac{-32±\sqrt{1040}}{2\times 4}
Add 1024 to 16.
x=\frac{-32±4\sqrt{65}}{2\times 4}
Take the square root of 1040.
x=\frac{-32±4\sqrt{65}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{65}-32}{8}
Now solve the equation x=\frac{-32±4\sqrt{65}}{8} when ± is plus. Add -32 to 4\sqrt{65}.
x=\frac{\sqrt{65}}{2}-4
Divide -32+4\sqrt{65} by 8.
x=\frac{-4\sqrt{65}-32}{8}
Now solve the equation x=\frac{-32±4\sqrt{65}}{8} when ± is minus. Subtract 4\sqrt{65} from -32.
x=-\frac{\sqrt{65}}{2}-4
Divide -32-4\sqrt{65} by 8.
x=\frac{\sqrt{65}}{2}-4 x=-\frac{\sqrt{65}}{2}-4
The equation is now solved.
4\left(x^{2}+8x\right)-1=0
Subtract 16 from 16 to get 0.
4x^{2}+32x-1=0
Use the distributive property to multiply 4 by x^{2}+8x.
4x^{2}+32x=1
Add 1 to both sides. Anything plus zero gives itself.
\frac{4x^{2}+32x}{4}=\frac{1}{4}
Divide both sides by 4.
x^{2}+\frac{32}{4}x=\frac{1}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+8x=\frac{1}{4}
Divide 32 by 4.
x^{2}+8x+4^{2}=\frac{1}{4}+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=\frac{1}{4}+16
Square 4.
x^{2}+8x+16=\frac{65}{4}
Add \frac{1}{4} to 16.
\left(x+4\right)^{2}=\frac{65}{4}
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{\frac{65}{4}}
Take the square root of both sides of the equation.
x+4=\frac{\sqrt{65}}{2} x+4=-\frac{\sqrt{65}}{2}
Simplify.
x=\frac{\sqrt{65}}{2}-4 x=-\frac{\sqrt{65}}{2}-4
Subtract 4 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}