Evaluate
14a^{6}
Expand
14a^{6}
Share
Copied to clipboard
\frac{4\left(\left(-3\right)^{2}\left(a^{3}\right)^{2}\left(-2\right)a^{2}+10a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-2a^{6}
Expand \left(-3a^{3}\right)^{2}.
\frac{4\left(\left(-3\right)^{2}a^{6}\left(-2\right)a^{2}+10a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-2a^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{4\left(9a^{6}\left(-2\right)a^{2}+10a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-2a^{6}
Calculate -3 to the power of 2 and get 9.
\frac{4\left(-18a^{6}a^{2}+10a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-2a^{6}
Multiply 9 and -2 to get -18.
\frac{4\left(-18a^{8}+10a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-2a^{6}
To multiply powers of the same base, add their exponents. Add 6 and 2 to get 8.
\frac{4\left(-8a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-2a^{6}
Combine -18a^{8} and 10a^{8} to get -8a^{8}.
\frac{4\left(-8\right)^{2}\left(a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-2a^{6}
Expand \left(-8a^{8}\right)^{2}.
\frac{4\left(-8\right)^{2}a^{16}}{\left(4a^{5}\right)^{2}}-2a^{6}
To raise a power to another power, multiply the exponents. Multiply 8 and 2 to get 16.
\frac{4\times 64a^{16}}{\left(4a^{5}\right)^{2}}-2a^{6}
Calculate -8 to the power of 2 and get 64.
\frac{256a^{16}}{\left(4a^{5}\right)^{2}}-2a^{6}
Multiply 4 and 64 to get 256.
\frac{256a^{16}}{4^{2}\left(a^{5}\right)^{2}}-2a^{6}
Expand \left(4a^{5}\right)^{2}.
\frac{256a^{16}}{4^{2}a^{10}}-2a^{6}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
\frac{256a^{16}}{16a^{10}}-2a^{6}
Calculate 4 to the power of 2 and get 16.
16a^{6}-2a^{6}
Cancel out 16a^{10} in both numerator and denominator.
14a^{6}
Combine 16a^{6} and -2a^{6} to get 14a^{6}.
\frac{4\left(\left(-3\right)^{2}\left(a^{3}\right)^{2}\left(-2\right)a^{2}+10a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-2a^{6}
Expand \left(-3a^{3}\right)^{2}.
\frac{4\left(\left(-3\right)^{2}a^{6}\left(-2\right)a^{2}+10a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-2a^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{4\left(9a^{6}\left(-2\right)a^{2}+10a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-2a^{6}
Calculate -3 to the power of 2 and get 9.
\frac{4\left(-18a^{6}a^{2}+10a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-2a^{6}
Multiply 9 and -2 to get -18.
\frac{4\left(-18a^{8}+10a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-2a^{6}
To multiply powers of the same base, add their exponents. Add 6 and 2 to get 8.
\frac{4\left(-8a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-2a^{6}
Combine -18a^{8} and 10a^{8} to get -8a^{8}.
\frac{4\left(-8\right)^{2}\left(a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-2a^{6}
Expand \left(-8a^{8}\right)^{2}.
\frac{4\left(-8\right)^{2}a^{16}}{\left(4a^{5}\right)^{2}}-2a^{6}
To raise a power to another power, multiply the exponents. Multiply 8 and 2 to get 16.
\frac{4\times 64a^{16}}{\left(4a^{5}\right)^{2}}-2a^{6}
Calculate -8 to the power of 2 and get 64.
\frac{256a^{16}}{\left(4a^{5}\right)^{2}}-2a^{6}
Multiply 4 and 64 to get 256.
\frac{256a^{16}}{4^{2}\left(a^{5}\right)^{2}}-2a^{6}
Expand \left(4a^{5}\right)^{2}.
\frac{256a^{16}}{4^{2}a^{10}}-2a^{6}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
\frac{256a^{16}}{16a^{10}}-2a^{6}
Calculate 4 to the power of 2 and get 16.
16a^{6}-2a^{6}
Cancel out 16a^{10} in both numerator and denominator.
14a^{6}
Combine 16a^{6} and -2a^{6} to get 14a^{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}