Solve for a
a=-\frac{17b}{12}+\frac{1}{3c}
c\neq 0
Solve for b
b=-\frac{12a}{17}+\frac{4}{17c}
c\neq 0
Share
Copied to clipboard
4=12ca+17cb
Use the distributive property to multiply c by 12a+17b.
12ca+17cb=4
Swap sides so that all variable terms are on the left hand side.
12ca=4-17cb
Subtract 17cb from both sides.
12ca=4-17bc
The equation is in standard form.
\frac{12ca}{12c}=\frac{4-17bc}{12c}
Divide both sides by 12c.
a=\frac{4-17bc}{12c}
Dividing by 12c undoes the multiplication by 12c.
a=-\frac{17b}{12}+\frac{1}{3c}
Divide 4-17cb by 12c.
4=12ca+17cb
Use the distributive property to multiply c by 12a+17b.
12ca+17cb=4
Swap sides so that all variable terms are on the left hand side.
17cb=4-12ca
Subtract 12ca from both sides.
17cb=4-12ac
The equation is in standard form.
\frac{17cb}{17c}=\frac{4-12ac}{17c}
Divide both sides by 17c.
b=\frac{4-12ac}{17c}
Dividing by 17c undoes the multiplication by 17c.
b=-\frac{12a}{17}+\frac{4}{17c}
Divide 4-12ca by 17c.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}