Solve for a
a=\sqrt{3}\approx 1.732050808
a=0
Quiz
Algebra
5 problems similar to:
4 = a ^ { 2 } + ( - \frac { \sqrt { 3 } } { 3 } a + 4 - 2 ) ^ { 2 }
Share
Copied to clipboard
4=a^{2}+\left(\frac{-\sqrt{3}a}{3}+4-2\right)^{2}
Express \left(-\frac{\sqrt{3}}{3}\right)a as a single fraction.
4=a^{2}+\left(\frac{-\sqrt{3}a}{3}+2\right)^{2}
Subtract 2 from 4 to get 2.
4=a^{2}+\left(\frac{-\sqrt{3}a}{3}\right)^{2}+4\times \frac{-\sqrt{3}a}{3}+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{-\sqrt{3}a}{3}+2\right)^{2}.
4=a^{2}+\frac{\left(-\sqrt{3}a\right)^{2}}{3^{2}}+4\times \frac{-\sqrt{3}a}{3}+4
To raise \frac{-\sqrt{3}a}{3} to a power, raise both numerator and denominator to the power and then divide.
4=a^{2}+\frac{\left(-\sqrt{3}a\right)^{2}}{3^{2}}+\frac{4\left(-1\right)\sqrt{3}a}{3}+4
Express 4\times \frac{-\sqrt{3}a}{3} as a single fraction.
4=a^{2}+\frac{\left(-\sqrt{3}a\right)^{2}}{9}+\frac{3\times 4\left(-1\right)\sqrt{3}a}{9}+4
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3^{2} and 3 is 9. Multiply \frac{4\left(-1\right)\sqrt{3}a}{3} times \frac{3}{3}.
4=a^{2}+\frac{\left(-\sqrt{3}a\right)^{2}+3\times 4\left(-1\right)\sqrt{3}a}{9}+4
Since \frac{\left(-\sqrt{3}a\right)^{2}}{9} and \frac{3\times 4\left(-1\right)\sqrt{3}a}{9} have the same denominator, add them by adding their numerators.
4=a^{2}+\frac{\left(-\sqrt{3}a\right)^{2}}{3^{2}}+\frac{4\left(-1\right)\sqrt{3}a}{3}+\frac{4\times 3^{2}}{3^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{3^{2}}{3^{2}}.
4=a^{2}+\frac{\left(-\sqrt{3}a\right)^{2}+4\times 3^{2}}{3^{2}}+\frac{4\left(-1\right)\sqrt{3}a}{3}
Since \frac{\left(-\sqrt{3}a\right)^{2}}{3^{2}} and \frac{4\times 3^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
4=a^{2}+\frac{\left(-\sqrt{3}a\right)^{2}+4\times 3^{2}}{3^{2}}+\frac{-4\sqrt{3}a}{3}
Multiply 4 and -1 to get -4.
4=\frac{a^{2}\times 3^{2}}{3^{2}}+\frac{\left(-\sqrt{3}a\right)^{2}+4\times 3^{2}}{3^{2}}+\frac{-4\sqrt{3}a}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{2} times \frac{3^{2}}{3^{2}}.
4=\frac{a^{2}\times 3^{2}+\left(-\sqrt{3}a\right)^{2}+4\times 3^{2}}{3^{2}}+\frac{-4\sqrt{3}a}{3}
Since \frac{a^{2}\times 3^{2}}{3^{2}} and \frac{\left(-\sqrt{3}a\right)^{2}+4\times 3^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
4=a^{2}+\frac{\left(-\sqrt{3}a\right)^{2}+4\times 3^{2}}{9}+\frac{3\left(-4\right)\sqrt{3}a}{9}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3^{2} and 3 is 9. Multiply \frac{-4\sqrt{3}a}{3} times \frac{3}{3}.
4=a^{2}+\frac{\left(-\sqrt{3}a\right)^{2}+4\times 3^{2}+3\left(-4\right)\sqrt{3}a}{9}
Since \frac{\left(-\sqrt{3}a\right)^{2}+4\times 3^{2}}{9} and \frac{3\left(-4\right)\sqrt{3}a}{9} have the same denominator, add them by adding their numerators.
4=a^{2}+\frac{\left(-1\right)^{2}\left(\sqrt{3}\right)^{2}a^{2}+4\times 3^{2}+3\left(-4\right)\sqrt{3}a}{9}
Expand \left(-\sqrt{3}a\right)^{2}.
4=a^{2}+\frac{1\left(\sqrt{3}\right)^{2}a^{2}+4\times 3^{2}+3\left(-4\right)\sqrt{3}a}{9}
Calculate -1 to the power of 2 and get 1.
4=a^{2}+\frac{1\times 3a^{2}+4\times 3^{2}+3\left(-4\right)\sqrt{3}a}{9}
The square of \sqrt{3} is 3.
4=a^{2}+\frac{3a^{2}+4\times 3^{2}+3\left(-4\right)\sqrt{3}a}{9}
Multiply 1 and 3 to get 3.
4=a^{2}+\frac{3a^{2}+4\times 9+3\left(-4\right)\sqrt{3}a}{9}
Calculate 3 to the power of 2 and get 9.
4=a^{2}+\frac{3a^{2}+36+3\left(-4\right)\sqrt{3}a}{9}
Multiply 4 and 9 to get 36.
4=a^{2}+\frac{3a^{2}+36-12\sqrt{3}a}{9}
Multiply 3 and -4 to get -12.
a^{2}+\frac{3a^{2}+36-12\sqrt{3}a}{9}=4
Swap sides so that all variable terms are on the left hand side.
a^{2}+\frac{3a^{2}+36-12\sqrt{3}a}{9}-4=0
Subtract 4 from both sides.
9a^{2}+3a^{2}+36-12\sqrt{3}a-36=0
Multiply both sides of the equation by 9.
3a^{2}+9a^{2}-12\sqrt{3}a+36-36=0
Reorder the terms.
12a^{2}-12\sqrt{3}a+36-36=0
Combine 3a^{2} and 9a^{2} to get 12a^{2}.
12a^{2}-12\sqrt{3}a=0
Subtract 36 from 36 to get 0.
a\left(12a-12\sqrt{3}\right)=0
Factor out a.
a=0 a=\sqrt{3}
To find equation solutions, solve a=0 and 12a-12\sqrt{3}=0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}