Solve for b
b = \frac{32}{3} = 10\frac{2}{3} \approx 10.666666667
Share
Copied to clipboard
4=\frac{-4\times 5}{3}+b
Express -\frac{4}{3}\times 5 as a single fraction.
4=\frac{-20}{3}+b
Multiply -4 and 5 to get -20.
4=-\frac{20}{3}+b
Fraction \frac{-20}{3} can be rewritten as -\frac{20}{3} by extracting the negative sign.
-\frac{20}{3}+b=4
Swap sides so that all variable terms are on the left hand side.
b=4+\frac{20}{3}
Add \frac{20}{3} to both sides.
b=\frac{12}{3}+\frac{20}{3}
Convert 4 to fraction \frac{12}{3}.
b=\frac{12+20}{3}
Since \frac{12}{3} and \frac{20}{3} have the same denominator, add them by adding their numerators.
b=\frac{32}{3}
Add 12 and 20 to get 32.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}