Solve for x (complex solution)
x=2+\sqrt{7}i\approx 2+2.645751311i
x=-\sqrt{7}i+2\approx 2-2.645751311i
Graph
Share
Copied to clipboard
4=x^{2}+2x+1+\left(x-5\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
4=x^{2}+2x+1+x^{2}-10x+25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
4=2x^{2}+2x+1-10x+25
Combine x^{2} and x^{2} to get 2x^{2}.
4=2x^{2}-8x+1+25
Combine 2x and -10x to get -8x.
4=2x^{2}-8x+26
Add 1 and 25 to get 26.
2x^{2}-8x+26=4
Swap sides so that all variable terms are on the left hand side.
2x^{2}-8x+26-4=0
Subtract 4 from both sides.
2x^{2}-8x+22=0
Subtract 4 from 26 to get 22.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\times 22}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -8 for b, and 22 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\times 22}}{2\times 2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\times 22}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-8\right)±\sqrt{64-176}}{2\times 2}
Multiply -8 times 22.
x=\frac{-\left(-8\right)±\sqrt{-112}}{2\times 2}
Add 64 to -176.
x=\frac{-\left(-8\right)±4\sqrt{7}i}{2\times 2}
Take the square root of -112.
x=\frac{8±4\sqrt{7}i}{2\times 2}
The opposite of -8 is 8.
x=\frac{8±4\sqrt{7}i}{4}
Multiply 2 times 2.
x=\frac{8+4\sqrt{7}i}{4}
Now solve the equation x=\frac{8±4\sqrt{7}i}{4} when ± is plus. Add 8 to 4i\sqrt{7}.
x=2+\sqrt{7}i
Divide 8+4i\sqrt{7} by 4.
x=\frac{-4\sqrt{7}i+8}{4}
Now solve the equation x=\frac{8±4\sqrt{7}i}{4} when ± is minus. Subtract 4i\sqrt{7} from 8.
x=-\sqrt{7}i+2
Divide 8-4i\sqrt{7} by 4.
x=2+\sqrt{7}i x=-\sqrt{7}i+2
The equation is now solved.
4=x^{2}+2x+1+\left(x-5\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
4=x^{2}+2x+1+x^{2}-10x+25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
4=2x^{2}+2x+1-10x+25
Combine x^{2} and x^{2} to get 2x^{2}.
4=2x^{2}-8x+1+25
Combine 2x and -10x to get -8x.
4=2x^{2}-8x+26
Add 1 and 25 to get 26.
2x^{2}-8x+26=4
Swap sides so that all variable terms are on the left hand side.
2x^{2}-8x=4-26
Subtract 26 from both sides.
2x^{2}-8x=-22
Subtract 26 from 4 to get -22.
\frac{2x^{2}-8x}{2}=-\frac{22}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{8}{2}\right)x=-\frac{22}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-4x=-\frac{22}{2}
Divide -8 by 2.
x^{2}-4x=-11
Divide -22 by 2.
x^{2}-4x+\left(-2\right)^{2}=-11+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-11+4
Square -2.
x^{2}-4x+4=-7
Add -11 to 4.
\left(x-2\right)^{2}=-7
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-7}
Take the square root of both sides of the equation.
x-2=\sqrt{7}i x-2=-\sqrt{7}i
Simplify.
x=2+\sqrt{7}i x=-\sqrt{7}i+2
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}