Solve for a
a=0
a=-4
Share
Copied to clipboard
4=a^{2}+4a+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+2\right)^{2}.
a^{2}+4a+4=4
Swap sides so that all variable terms are on the left hand side.
a^{2}+4a+4-4=0
Subtract 4 from both sides.
a^{2}+4a=0
Subtract 4 from 4 to get 0.
a\left(a+4\right)=0
Factor out a.
a=0 a=-4
To find equation solutions, solve a=0 and a+4=0.
4=a^{2}+4a+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+2\right)^{2}.
a^{2}+4a+4=4
Swap sides so that all variable terms are on the left hand side.
a^{2}+4a+4-4=0
Subtract 4 from both sides.
a^{2}+4a=0
Subtract 4 from 4 to get 0.
a=\frac{-4±\sqrt{4^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-4±4}{2}
Take the square root of 4^{2}.
a=\frac{0}{2}
Now solve the equation a=\frac{-4±4}{2} when ± is plus. Add -4 to 4.
a=0
Divide 0 by 2.
a=-\frac{8}{2}
Now solve the equation a=\frac{-4±4}{2} when ± is minus. Subtract 4 from -4.
a=-4
Divide -8 by 2.
a=0 a=-4
The equation is now solved.
4=a^{2}+4a+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+2\right)^{2}.
a^{2}+4a+4=4
Swap sides so that all variable terms are on the left hand side.
\left(a+2\right)^{2}=4
Factor a^{2}+4a+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+2\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
a+2=2 a+2=-2
Simplify.
a=0 a=-4
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}