Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4=4x^{2}-4+x
Subtract 3 from -1 to get -4.
4x^{2}-4+x=4
Swap sides so that all variable terms are on the left hand side.
4x^{2}-4+x-4=0
Subtract 4 from both sides.
4x^{2}-8+x=0
Subtract 4 from -4 to get -8.
4x^{2}+x-8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\times 4\left(-8\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 1 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 4\left(-8\right)}}{2\times 4}
Square 1.
x=\frac{-1±\sqrt{1-16\left(-8\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-1±\sqrt{1+128}}{2\times 4}
Multiply -16 times -8.
x=\frac{-1±\sqrt{129}}{2\times 4}
Add 1 to 128.
x=\frac{-1±\sqrt{129}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{129}-1}{8}
Now solve the equation x=\frac{-1±\sqrt{129}}{8} when ± is plus. Add -1 to \sqrt{129}.
x=\frac{-\sqrt{129}-1}{8}
Now solve the equation x=\frac{-1±\sqrt{129}}{8} when ± is minus. Subtract \sqrt{129} from -1.
x=\frac{\sqrt{129}-1}{8} x=\frac{-\sqrt{129}-1}{8}
The equation is now solved.
4=4x^{2}-4+x
Subtract 3 from -1 to get -4.
4x^{2}-4+x=4
Swap sides so that all variable terms are on the left hand side.
4x^{2}+x=4+4
Add 4 to both sides.
4x^{2}+x=8
Add 4 and 4 to get 8.
\frac{4x^{2}+x}{4}=\frac{8}{4}
Divide both sides by 4.
x^{2}+\frac{1}{4}x=\frac{8}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{1}{4}x=2
Divide 8 by 4.
x^{2}+\frac{1}{4}x+\left(\frac{1}{8}\right)^{2}=2+\left(\frac{1}{8}\right)^{2}
Divide \frac{1}{4}, the coefficient of the x term, by 2 to get \frac{1}{8}. Then add the square of \frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{4}x+\frac{1}{64}=2+\frac{1}{64}
Square \frac{1}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{129}{64}
Add 2 to \frac{1}{64}.
\left(x+\frac{1}{8}\right)^{2}=\frac{129}{64}
Factor x^{2}+\frac{1}{4}x+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{8}\right)^{2}}=\sqrt{\frac{129}{64}}
Take the square root of both sides of the equation.
x+\frac{1}{8}=\frac{\sqrt{129}}{8} x+\frac{1}{8}=-\frac{\sqrt{129}}{8}
Simplify.
x=\frac{\sqrt{129}-1}{8} x=\frac{-\sqrt{129}-1}{8}
Subtract \frac{1}{8} from both sides of the equation.