Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4=9x^{2}-12x+4-9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-2\right)^{2}.
4=9x^{2}-12x-5
Subtract 9 from 4 to get -5.
9x^{2}-12x-5=4
Swap sides so that all variable terms are on the left hand side.
9x^{2}-12x-5-4=0
Subtract 4 from both sides.
9x^{2}-12x-9=0
Subtract 4 from -5 to get -9.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 9\left(-9\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -12 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 9\left(-9\right)}}{2\times 9}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-36\left(-9\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-12\right)±\sqrt{144+324}}{2\times 9}
Multiply -36 times -9.
x=\frac{-\left(-12\right)±\sqrt{468}}{2\times 9}
Add 144 to 324.
x=\frac{-\left(-12\right)±6\sqrt{13}}{2\times 9}
Take the square root of 468.
x=\frac{12±6\sqrt{13}}{2\times 9}
The opposite of -12 is 12.
x=\frac{12±6\sqrt{13}}{18}
Multiply 2 times 9.
x=\frac{6\sqrt{13}+12}{18}
Now solve the equation x=\frac{12±6\sqrt{13}}{18} when ± is plus. Add 12 to 6\sqrt{13}.
x=\frac{\sqrt{13}+2}{3}
Divide 12+6\sqrt{13} by 18.
x=\frac{12-6\sqrt{13}}{18}
Now solve the equation x=\frac{12±6\sqrt{13}}{18} when ± is minus. Subtract 6\sqrt{13} from 12.
x=\frac{2-\sqrt{13}}{3}
Divide 12-6\sqrt{13} by 18.
x=\frac{\sqrt{13}+2}{3} x=\frac{2-\sqrt{13}}{3}
The equation is now solved.
4=9x^{2}-12x+4-9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-2\right)^{2}.
4=9x^{2}-12x-5
Subtract 9 from 4 to get -5.
9x^{2}-12x-5=4
Swap sides so that all variable terms are on the left hand side.
9x^{2}-12x=4+5
Add 5 to both sides.
9x^{2}-12x=9
Add 4 and 5 to get 9.
\frac{9x^{2}-12x}{9}=\frac{9}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{12}{9}\right)x=\frac{9}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{4}{3}x=\frac{9}{9}
Reduce the fraction \frac{-12}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{4}{3}x=1
Divide 9 by 9.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=1+\left(-\frac{2}{3}\right)^{2}
Divide -\frac{4}{3}, the coefficient of the x term, by 2 to get -\frac{2}{3}. Then add the square of -\frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{3}x+\frac{4}{9}=1+\frac{4}{9}
Square -\frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{13}{9}
Add 1 to \frac{4}{9}.
\left(x-\frac{2}{3}\right)^{2}=\frac{13}{9}
Factor x^{2}-\frac{4}{3}x+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{13}{9}}
Take the square root of both sides of the equation.
x-\frac{2}{3}=\frac{\sqrt{13}}{3} x-\frac{2}{3}=-\frac{\sqrt{13}}{3}
Simplify.
x=\frac{\sqrt{13}+2}{3} x=\frac{2-\sqrt{13}}{3}
Add \frac{2}{3} to both sides of the equation.