4 = | x + x \cdot 0.0000232 \cdot 492
Solve for x
x = -\frac{1250000}{316067} = -3\frac{301799}{316067} \approx -3.954857673
x = \frac{1250000}{316067} = 3\frac{301799}{316067} \approx 3.954857673
Graph
Share
Copied to clipboard
4=|x+x\times 0.0114144|
Multiply 0.0000232 and 492 to get 0.0114144.
4=|1.0114144x|
Combine x and x\times 0.0114144 to get 1.0114144x.
|1.0114144x|=4
Swap sides so that all variable terms are on the left hand side.
1.0114144x=4 1.0114144x=-4
Use the definition of absolute value.
x=\frac{1250000}{316067} x=-\frac{1250000}{316067}
Divide both sides of the equation by 1.0114144, which is the same as multiplying both sides by the reciprocal of the fraction.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}