Solve for x
x=4
Graph
Share
Copied to clipboard
4=\frac{9}{4}x+\frac{9}{4}\left(-4\right)+4
Use the distributive property to multiply \frac{9}{4} by x-4.
4=\frac{9}{4}x+\frac{9\left(-4\right)}{4}+4
Express \frac{9}{4}\left(-4\right) as a single fraction.
4=\frac{9}{4}x+\frac{-36}{4}+4
Multiply 9 and -4 to get -36.
4=\frac{9}{4}x-9+4
Divide -36 by 4 to get -9.
4=\frac{9}{4}x-5
Add -9 and 4 to get -5.
\frac{9}{4}x-5=4
Swap sides so that all variable terms are on the left hand side.
\frac{9}{4}x=4+5
Add 5 to both sides.
\frac{9}{4}x=9
Add 4 and 5 to get 9.
x=9\times \frac{4}{9}
Multiply both sides by \frac{4}{9}, the reciprocal of \frac{9}{4}.
x=4
Cancel out 9 and 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}