Solve for x (complex solution)
x\in \sqrt[3]{\sqrt{21}+3}e^{\frac{\pi i}{3}},\sqrt[3]{\sqrt{21}+3}e^{\frac{5\pi i}{3}},-\sqrt[3]{\sqrt{21}+3},\sqrt[3]{\sqrt{21}-3}e^{\frac{4\pi i}{3}},\sqrt[3]{\sqrt{21}-3},\sqrt[3]{\sqrt{21}-3}e^{\frac{2\pi i}{3}}
Solve for x
x=\sqrt[3]{\sqrt{21}-3}\approx 1.165345841
x=-\sqrt[3]{\sqrt{21}+3}\approx -1.964591458
Graph
Share
Copied to clipboard
\frac{1}{6}x^{6}+x^{3}+2=4
Swap sides so that all variable terms are on the left hand side.
\frac{1}{6}x^{6}+x^{3}+2-4=0
Subtract 4 from both sides.
\frac{1}{6}x^{6}+x^{3}-2=0
Subtract 4 from 2 to get -2.
\frac{1}{6}t^{2}+t-2=0
Substitute t for x^{3}.
t=\frac{-1±\sqrt{1^{2}-4\times \frac{1}{6}\left(-2\right)}}{\frac{1}{6}\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute \frac{1}{6} for a, 1 for b, and -2 for c in the quadratic formula.
t=\frac{-1±\frac{1}{3}\sqrt{21}}{\frac{1}{3}}
Do the calculations.
t=\sqrt{21}-3 t=-\sqrt{21}-3
Solve the equation t=\frac{-1±\frac{1}{3}\sqrt{21}}{\frac{1}{3}} when ± is plus and when ± is minus.
x=-\sqrt[3]{\sqrt{21}-3}e^{\frac{\pi i}{3}} x=\sqrt[3]{\sqrt{21}-3}ie^{\frac{\pi i}{6}} x=\sqrt[3]{\sqrt{21}-3} x=-\sqrt[3]{\sqrt{21}+3}ie^{\frac{\pi i}{6}} x=-\sqrt[3]{\sqrt{21}+3} x=\sqrt[3]{\sqrt{21}+3}e^{\frac{\pi i}{3}}
Since x=t^{3}, the solutions are obtained by solving the equation for each t.
\frac{1}{6}x^{6}+x^{3}+2=4
Swap sides so that all variable terms are on the left hand side.
\frac{1}{6}x^{6}+x^{3}+2-4=0
Subtract 4 from both sides.
\frac{1}{6}x^{6}+x^{3}-2=0
Subtract 4 from 2 to get -2.
\frac{1}{6}t^{2}+t-2=0
Substitute t for x^{3}.
t=\frac{-1±\sqrt{1^{2}-4\times \frac{1}{6}\left(-2\right)}}{\frac{1}{6}\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute \frac{1}{6} for a, 1 for b, and -2 for c in the quadratic formula.
t=\frac{-1±\frac{1}{3}\sqrt{21}}{\frac{1}{3}}
Do the calculations.
t=\sqrt{21}-3 t=-\sqrt{21}-3
Solve the equation t=\frac{-1±\frac{1}{3}\sqrt{21}}{\frac{1}{3}} when ± is plus and when ± is minus.
x=\sqrt[3]{\sqrt{21}-3} x=-\sqrt[3]{\sqrt{21}+3}
Since x=t^{3}, the solutions are obtained by evaluating x=\sqrt[3]{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}