Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{6}x^{6}+x^{3}+2=4
Swap sides so that all variable terms are on the left hand side.
\frac{1}{6}x^{6}+x^{3}+2-4=0
Subtract 4 from both sides.
\frac{1}{6}x^{6}+x^{3}-2=0
Subtract 4 from 2 to get -2.
\frac{1}{6}t^{2}+t-2=0
Substitute t for x^{3}.
t=\frac{-1±\sqrt{1^{2}-4\times \frac{1}{6}\left(-2\right)}}{\frac{1}{6}\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute \frac{1}{6} for a, 1 for b, and -2 for c in the quadratic formula.
t=\frac{-1±\frac{1}{3}\sqrt{21}}{\frac{1}{3}}
Do the calculations.
t=\sqrt{21}-3 t=-\sqrt{21}-3
Solve the equation t=\frac{-1±\frac{1}{3}\sqrt{21}}{\frac{1}{3}} when ± is plus and when ± is minus.
x=-\sqrt[3]{\sqrt{21}-3}e^{\frac{\pi i}{3}} x=\sqrt[3]{\sqrt{21}-3}ie^{\frac{\pi i}{6}} x=\sqrt[3]{\sqrt{21}-3} x=-\sqrt[3]{\sqrt{21}+3}ie^{\frac{\pi i}{6}} x=-\sqrt[3]{\sqrt{21}+3} x=\sqrt[3]{\sqrt{21}+3}e^{\frac{\pi i}{3}}
Since x=t^{3}, the solutions are obtained by solving the equation for each t.
\frac{1}{6}x^{6}+x^{3}+2=4
Swap sides so that all variable terms are on the left hand side.
\frac{1}{6}x^{6}+x^{3}+2-4=0
Subtract 4 from both sides.
\frac{1}{6}x^{6}+x^{3}-2=0
Subtract 4 from 2 to get -2.
\frac{1}{6}t^{2}+t-2=0
Substitute t for x^{3}.
t=\frac{-1±\sqrt{1^{2}-4\times \frac{1}{6}\left(-2\right)}}{\frac{1}{6}\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute \frac{1}{6} for a, 1 for b, and -2 for c in the quadratic formula.
t=\frac{-1±\frac{1}{3}\sqrt{21}}{\frac{1}{3}}
Do the calculations.
t=\sqrt{21}-3 t=-\sqrt{21}-3
Solve the equation t=\frac{-1±\frac{1}{3}\sqrt{21}}{\frac{1}{3}} when ± is plus and when ± is minus.
x=\sqrt[3]{\sqrt{21}-3} x=-\sqrt[3]{\sqrt{21}+3}
Since x=t^{3}, the solutions are obtained by evaluating x=\sqrt[3]{t} for each t.