Solve for f
f=-\frac{4x\left(x^{2}-6x+8\right)}{-3x^{2}+18x-25}
x\neq 2\text{ and }x\neq 4\text{ and }x\neq 0\text{ and }x\neq \frac{\sqrt{6}}{3}+3\text{ and }x\neq -\frac{\sqrt{6}}{3}+3
Graph
Share
Copied to clipboard
\left(x-4\right)\left(x-2\right)\times 4x=f\left(3x^{2}-18x+25\right)
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by f\left(x-4\right)\left(x-2\right), the least common multiple of f,x^{2}-6x+8.
\left(x^{2}-6x+8\right)\times 4x=f\left(3x^{2}-18x+25\right)
Use the distributive property to multiply x-4 by x-2 and combine like terms.
\left(4x^{2}-24x+32\right)x=f\left(3x^{2}-18x+25\right)
Use the distributive property to multiply x^{2}-6x+8 by 4.
4x^{3}-24x^{2}+32x=f\left(3x^{2}-18x+25\right)
Use the distributive property to multiply 4x^{2}-24x+32 by x.
4x^{3}-24x^{2}+32x=3fx^{2}-18fx+25f
Use the distributive property to multiply f by 3x^{2}-18x+25.
3fx^{2}-18fx+25f=4x^{3}-24x^{2}+32x
Swap sides so that all variable terms are on the left hand side.
\left(3x^{2}-18x+25\right)f=4x^{3}-24x^{2}+32x
Combine all terms containing f.
\frac{\left(3x^{2}-18x+25\right)f}{3x^{2}-18x+25}=\frac{4x\left(x-4\right)\left(x-2\right)}{3x^{2}-18x+25}
Divide both sides by 3x^{2}-18x+25.
f=\frac{4x\left(x-4\right)\left(x-2\right)}{3x^{2}-18x+25}
Dividing by 3x^{2}-18x+25 undoes the multiplication by 3x^{2}-18x+25.
f=\frac{4x\left(x-4\right)\left(x-2\right)}{3x^{2}-18x+25}\text{, }f\neq 0
Variable f cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}