Skip to main content
Solve for f
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-4\right)\left(x-2\right)\times 4x=f\left(3x^{2}-18x+25\right)
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by f\left(x-4\right)\left(x-2\right), the least common multiple of f,x^{2}-6x+8.
\left(x^{2}-6x+8\right)\times 4x=f\left(3x^{2}-18x+25\right)
Use the distributive property to multiply x-4 by x-2 and combine like terms.
\left(4x^{2}-24x+32\right)x=f\left(3x^{2}-18x+25\right)
Use the distributive property to multiply x^{2}-6x+8 by 4.
4x^{3}-24x^{2}+32x=f\left(3x^{2}-18x+25\right)
Use the distributive property to multiply 4x^{2}-24x+32 by x.
4x^{3}-24x^{2}+32x=3fx^{2}-18fx+25f
Use the distributive property to multiply f by 3x^{2}-18x+25.
3fx^{2}-18fx+25f=4x^{3}-24x^{2}+32x
Swap sides so that all variable terms are on the left hand side.
\left(3x^{2}-18x+25\right)f=4x^{3}-24x^{2}+32x
Combine all terms containing f.
\frac{\left(3x^{2}-18x+25\right)f}{3x^{2}-18x+25}=\frac{4x\left(x-4\right)\left(x-2\right)}{3x^{2}-18x+25}
Divide both sides by 3x^{2}-18x+25.
f=\frac{4x\left(x-4\right)\left(x-2\right)}{3x^{2}-18x+25}
Dividing by 3x^{2}-18x+25 undoes the multiplication by 3x^{2}-18x+25.
f=\frac{4x\left(x-4\right)\left(x-2\right)}{3x^{2}-18x+25}\text{, }f\neq 0
Variable f cannot be equal to 0.