Evaluate
\frac{8}{81}\approx 0.098765432
Factor
\frac{2 ^ {3}}{3 ^ {4}} = 0.09876543209876543
Share
Copied to clipboard
\frac{\frac{4}{4\sqrt{3}+\frac{1}{4}\sqrt{12}}}{\sqrt{27}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{\frac{4}{4\sqrt{3}+\frac{1}{4}\times 2\sqrt{3}}}{\sqrt{27}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{\frac{4}{4\sqrt{3}+\frac{2}{4}\sqrt{3}}}{\sqrt{27}}
Multiply \frac{1}{4} and 2 to get \frac{2}{4}.
\frac{\frac{4}{4\sqrt{3}+\frac{1}{2}\sqrt{3}}}{\sqrt{27}}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{\frac{4}{\frac{9}{2}\sqrt{3}}}{\sqrt{27}}
Combine 4\sqrt{3} and \frac{1}{2}\sqrt{3} to get \frac{9}{2}\sqrt{3}.
\frac{\frac{4\sqrt{3}}{\frac{9}{2}\left(\sqrt{3}\right)^{2}}}{\sqrt{27}}
Rationalize the denominator of \frac{4}{\frac{9}{2}\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{4\sqrt{3}}{\frac{9}{2}\times 3}}{\sqrt{27}}
The square of \sqrt{3} is 3.
\frac{\frac{4\sqrt{3}}{\frac{9\times 3}{2}}}{\sqrt{27}}
Express \frac{9}{2}\times 3 as a single fraction.
\frac{\frac{4\sqrt{3}}{\frac{27}{2}}}{\sqrt{27}}
Multiply 9 and 3 to get 27.
\frac{\frac{4\sqrt{3}\times 2}{27}}{\sqrt{27}}
Divide 4\sqrt{3} by \frac{27}{2} by multiplying 4\sqrt{3} by the reciprocal of \frac{27}{2}.
\frac{\frac{8\sqrt{3}}{27}}{\sqrt{27}}
Multiply 4 and 2 to get 8.
\frac{\frac{8\sqrt{3}}{27}}{3\sqrt{3}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{8\sqrt{3}}{27\times 3\sqrt{3}}
Express \frac{\frac{8\sqrt{3}}{27}}{3\sqrt{3}} as a single fraction.
\frac{8}{3\times 27}
Cancel out \sqrt{3} in both numerator and denominator.
\frac{8}{81}
Multiply 3 and 27 to get 81.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}