4 / 5 x | 1 / 6 =
Evaluate
\frac{2x}{15}
Differentiate w.r.t. x
\frac{2}{15} = 0.13333333333333333
Graph
Share
Copied to clipboard
\frac{4}{5}x\times \frac{1}{6}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of \frac{1}{6} is \frac{1}{6}.
\frac{4\times 1}{5\times 6}x
Multiply \frac{4}{5} times \frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{30}x
Do the multiplications in the fraction \frac{4\times 1}{5\times 6}.
\frac{2}{15}x
Reduce the fraction \frac{4}{30} to lowest terms by extracting and canceling out 2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4}{5}x\times \frac{1}{6})
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of \frac{1}{6} is \frac{1}{6}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4\times 1}{5\times 6}x)
Multiply \frac{4}{5} times \frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4}{30}x)
Do the multiplications in the fraction \frac{4\times 1}{5\times 6}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2}{15}x)
Reduce the fraction \frac{4}{30} to lowest terms by extracting and canceling out 2.
\frac{2}{15}x^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{2}{15}x^{0}
Subtract 1 from 1.
\frac{2}{15}\times 1
For any term t except 0, t^{0}=1.
\frac{2}{15}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}